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A (r,s)-out-of-(m,n):F system consists in m×n elements arranged in n rows and m columns; it fails if all elements
in a block r × s fail. The interest in such systems has never dwindled since their introduction by Salvia and Lasher
(1990), because of the ever increasing number of real-life applications: reliability of electronic devices, X-ray and
disease diagnostic, security of communications and property, pattern search systems, etc. Computing their exact
availability has been, in the general case, deemed a numerically complex task by Nashwan (2018) and Zhao et al.
(2011). Only a few configurations have allowed simple solutions.
The special case of (2,2)-out-of-(m,n):F systems has been studied by (Malinowski and Tanguy, 2022), in which
exact solutions where provided for 2 ≤ m ≤ 10 and arbitrary n through recurrence relations, the order of which
increases drastically with m. Based on these results, an analytical, asymptotic expansion was given for large m and
n, which was shown to be in excellent agreement for m as low as 4.
In this paper, we generalize our previous work to (r,2)-out-of-(m,n):F systems. We have obtained the exact
expressions of the availability for 3 ≤ r ≤ 8 and several values of m, while n can remain arbitrary. An asymptotic
expansion has again been inferred for arbitrary (large) m and n, which allows quick numerical evaluations. We
have also calculated the Mean Time To Failure of such systems, assuming that all elements are identical and obey a
Weibull lifetime distribution.

Keywords: Cellular network, connected (r,s)-out-of-(m,n):F lattice system, network reliability, availability, gener-
ating function, asymptotic expansion.

1. Introduction and context

A simple description of a telecommunication

network may be performed by considering a

two-dimensional lattice system, such as those

initially proposed by (Salvia and Lasher, 1990;

Ksir, 1992; Boehme et al., 1992; Zuo, 1993;

Preuss and Boehme, 1994) for a generalization of

the well-known k-out-of-n systems. A (r,s)-out-

of-(m,n):F system consists in m × n elements

arranged in n rows and m columns; the system

fails if all elements in a block r × s fail. An

algorithm in O(sm−r m2 r n) has been published

(Yamamoto and Miyakawa, 1995) for the general

(r,s)-out-of-(m,n):F lattice system, with a numer-

ical evaluation for r = 2, s = 2, m = 4, and

n = 4, 10, 50. This effort has attracted a lot of in-

terest from various groups (Khamis and Mokhlis,

1997; Habib et al., 2010; Yamamoto et al., 2008;

Zhao et al., 2011; Nashwan, 2015) that developed

various improved algorithms, while keeping small

values of r, s, and m. A more recent effort

(Nakamura et al., 2018) focused on the cases r =

m−1 and r = m−2 for which efficient algorithms

were proposed. Other approaches using embedded

Markov chains or Monte Carlo computations have

been published (Zhao et al., 2009, 2012). More

recently (Malinowski, 2021), the case r = s =

2 and 2 ≤ m ≤ 4 has been revisited, with

algorithms of O(n + m) complexity, calculating

reliability through nested recursions.

We cannot give here the credit that they deserve

to all the works concerning (r,s)-out-of-(m,n):F

configurations, and their many variants. Excel-

lent surveys are found in (Kuo and Zuo, 2003;

Akiba et al., 2019). This sustained mathematical

effort demonstrates that these configurations have
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many practical applications, as recognized early

by Salvia and Lasher (1990). They identified

the reliability of electronic devices as a straight-

forward application of their calculations. This

has remained true (Chang and Mohapatra, 1998;

Beiu and Dăuş, 2015; Akiba and Yamamoto,

2001), even though the size of transistors and

other devices has shrunk drastically. X-rays

and disease diagnostics (Salvia and Lasher, 1990;

Hsieh and Chen, 2004) may now be joined by

studies of biological systems at the cell scale

(Beiu and Dăuş, 2015). Wireless sensor sys-

tems for security and communication are now

pervading our lives and their reliabilities are

of the utmost importance (Makri and Psillakis,

1997; Habib et al., 2010; Cheng et al., 2016;

Si et al., 2017; Nakamura et al., 2018; Liu, 2019;

Malinowski, 2021). Finally, pattern search sys-

tems (Aki and Hirano, 2004; Hsieh and Chen,

2004; Habib et al., 2010) are a crucial topic for

the AI techniques that have revolutionized many

industrial sectors.

The purpose of this paper is to assess the prob-

ability of operation of a (r,2)-out-of-(m,n):F lat-

tice system, Pr(Br×2
m×n), extending our previous

results (Malinowski and Tanguy, 2022). The gen-

eral aim is to provide simple, analytical results,

that could still give accurate results in essentially

O(1) time. We also address the Mean Time To

Failure (MTTF) of such systems.

The paper is organized as follows. In Section 2,

we start with the case r = 3 and s = 2, for

the smallest possible width (m = 3) of inter-

est. We introduce the use of generating functions,

which leads to a complete analytical solution of

the m = 3 case. The quasi-power-law behavior of

Pr(B3×2
3×n) for large n’s is demonstrated when the

unavailability of elements, q, is small, because one

eigenvalue of the problem prevails over the others.

Section 3 deals with the m = 4 configuration,

still with r = 3 and s = 2. The methodology

used in this work is explained, with an emphasis

on the “transfer matrix” approach to the problem.

Exact analytical results are provided and already

show that as m increases, the solution becomes

more complex. Section 4 treats the m ≥ 5 cases,

which have been solved exactly for arbitrary q

when m ≤ 12. It shows that the orders of the

recursions increase faster than m, while the quasi-

power-law dependence holds. We then repeat in

Section 5 all the procedure for 4 ≤ r ≤ 8 in order

to assess the dependence of the results on r. We

devote Section 6 to the assessment of the MTTF of

a (r,2)-out-of-(m,n):F lattice system. Our results

lead to a general expression in the (r,s)-out-of-

(m,n):F configuration. We finally summarize our

results and their possible extensions in the Con-

clusion.

2. Case r = 3, s = 2, and m = 3

The values of Pr(B3×2
3×n) ≡ Rn can be obtained

very easily from the recurrence relation

Rn = (1− q3)Rn−1 + q3 (1− q3)Rn−2 , (1)

and the initial conditions R0 = 1 and R1 = 1.

These recurrence relations lead to a simple expres-

sion using a generating function generally defined

by (Stanley, 2011):

G(z) =
∞∑

n=0

Rn z
n . (2)

Because of the recurrence relation (1), G3(z) is

here a rational fraction of z, which reads

G3(z) = 1 + q3 z

1− (1− q3) z − q3 (1− q3) z2
. (3)

Its partial fraction decomposition gives

G3(z) = α+

1− ζ+ z
+

α−
1− ζ− z

. (4)

The power series expansion in z of (4), compared

with (2), gives

Rn = α+ ζn+ + α− ζn− , (5)

where

ζ± =
1

2

(
1− q3 ±

√
1 + 2 q3 − 3 q6

)
, (6)

α± =
1

2
± 1 + q3

2
√
1 + 2 q3 − 3 q6

. (7)

The eigenvalues ζ± are determined by solving

the simple quadratic equation deduced from the

denominator of (3), while α± are found from

solving the system {R0 = 1, R1 = 1}, using (5).

Alternatively, α± is the residue associated with

the root 1/ζ± of the denominator of G3(z). The
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variations with q of the two eigenvalues are shown

in Figure 1. In practice, one is mainly interested

in high component availabilities (q → 0). In this

regime, ζ+ → 1 and ζ− → 0, while α+ → 1 and

α− → 0. When n is large enough, the prevailing

term is thus associated with ζ+:

Rn ≈ α+ ζn+ . (8)

This means that for large n’s, an accurate estimate

of Rn can be obtained. The complexity of the

calculation is then O(1), not O(n).
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Fig. 1. Variation of the two eigenvalues ζ+ (green)
and ζ− (blue) when m = 3.

3. Detailed derivation for r = 3, s = 2,
and m = 3

The aim of this section is to explain the existence

of a recurrence relation between successive values

of n for Pr(B3×2
m×n). The gist of the method is

given for m = 4 and is readily generalized.

For a lattice of width m = 4, the successive

objects are replaced by 1 if they are operating, and

0 if they are failed. The state of each row can then

be seen as the binary representation of an integer

k such that 0 ≤ k ≤ 15 (in the general case, the

bounds will be 0 and 2m − 1). The system will

fail if there exists a 3 × 2 block of 0’s when a

new layer (row) is added. For such a configuration

to occur, only seven “transitions” are possible, as

shown below (note the red 3× 2 blocks of zeros).

0 −→ 0
0 0 0 0

0 0 0 0

0 −→ 1
0 0 0 0

0 0 0 1

0 −→ 8
0 0 0 0

1 0 0 0

1 −→ 0
0 0 0 1

0 0 0 0

1 −→ 1
0 0 0 1

0 0 0 1

8 −→ 0
1 0 0 0

0 0 0 0

8 −→ 8
1 0 0 0

1 0 0 0

Consequently, one can merge the states de-

scribed by the integers 2, 3, 5, 6, and 7 in a

single state E (for “Else”). A new set of four states

I = {0, 1, 8,E} must now be considered. Let

us denote by p
(n)
i the probability that the n-layer

lattice is still operating, provided that the last (nth)

layer is described by the ith state, with i ∈ I .

We have therefore p
(n)
0 = Prn(0) p

(n−1)
E (the only

possibility here), where Prn(0) is the probability

of occurrence of state 0 in layer n. It is not difficult

to consider all the cases and derive

p
(n)
0 = Prn(0) p

(n−1)
E

p
(n)
1 = Prn(1)

(
p
(n−1)
8 + p

(n−1)
E

)

p
(n)
8 = Prn(8)

(
p
(n−1)
1 + p

(n−1)
E

)

p
(n)
E = Prn(E)

(
p
(n−1)
0 + p

(n−1)
1

+ p
(n−1)
8 + p

(n−1)
E

)
(9)

For the sake of simplicity, we assume that Prn(i)

does not depend on n; its simplified notation will
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be p(i) from now on. Equation (9) is rewritten as

⎛
⎜⎜⎜⎝
p
(n)
0

p
(n)
1

p
(n)
8

p
(n)
E

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

0 0 0 p(0)

0 0 p(1) p(1)

0 p(8) 0 p(8)

p(E) p(E) p(E) p(E)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝
p
(n−1)
0

p
(n−1)
1

p
(n−1)
8

p
(n−1)
E

⎞
⎟⎟⎟⎠

(10)

Let us denote by M the 4 × 4 transfer ma-

trix in (10). The calculation of Pr(B3×2
4×n) =∑

i∈{0,1,8,E}
p
(n)
i is easily done since p

(1)
i = p(i):

Pr(B3×2
4×n) = (1 1 1 1) ·Mn ·

⎛
⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎠ . (11)

The probability of failure of each element is given

by q, so that p(0) = q4, p(1) = p(8) = q3 (1−q),

and p(E) = 1−p(0)−p(1)−p(8) = 1−2 q3+q4.

Using the simplified notation Pr(B3×2
4×n) ≡ Rn,

one must have R0 = R1 = 1. The next values are

R2 = 1− 2 q6 + q8 ,

R3 = 1− 4 q6 + 2 q8 + 2 q9 + 2 q10 − 4 q11

+ q12 ,

R4 = 1− 6 q6 + 3 q8 + 4 q9 + 4 q10 − 8 q11

+ 4 q12 − 4 q13 + 2 q14 ,

R5 = −8 q6 + 4 q8 + 6 q9 + 6 q10 − 12 q11

+ 11 q12 − 8 q13 − 6 q15 − q16 + 14 q17

− 6 q18 − 2 q19 + q20 − 2 q11 + 15 q12

− 6 q13 − 2 q14 + q15 .

Because the Rn’s rely on the nth power of

matrix M , they must obey a recurrence relation

the order of which is at most the size of the matrix.

In the case m = 4, the characteristic polynomial

of M is

Pm=4(X) = (X + q3 − q4)

×
(
X3 − (1− q3)X2 − q3 (1− 2 q3 + q4)X

+ q7 (1− q)2 (1 + q + q2 − q3)
)
. (12)

The recurrence relation is actually related to the

polynomial of degree 3 in X in (12):

Rn = (1− q3)Rn−1

+ q3 (1− 2 q3 + q4)Rn−2

− q7 (1− q)2 (1 + q + q2 − q3)Rn−3 , (13)

with R0 = R1 = 1, and R2 = 1 − 2 q6 + q8.

The first Rn’s lead to the associated generating

function G4(z) = N4(z)/D4(z), with

N4(z) = 1 + q3 z − (1− q) q7 z2 (14)

D4(z) = 1− (1− q3) z

− q3 (1− 2 q3 + q4) z2

+ q7 (1− q)2 (1 + q + q2 − q3) z3 (15)

The variations of the three ζk with q are dis-

played in Figure 2. They are such that, again,

when n is moderately large and q close to 0, Rn

essentially obeys a power law with respect to n:

Rn ≈ α
(4)
+

(
ζ
(4)
+

)n

. (16)
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Fig. 2. Variation with q of the three eigenvalues when

m = 4. ζ
(4)
+ is represented by the green curve.

Again, the calculation of the probabilities can

be performed in O(1) time.

4. Case m ≥ 5 for r = 3 and s = 2

The previous methodology is also used for 5 ≤
m ≤ 12, and the results are similar. The

number of eigenvalues, which are all real, in-

creases with m as in the (2,2)-out-of-(m,n) case

(Malinowski and Tanguy, 2022). For 3 ≤ m ≤
12, we have respectively 2, 3, 4, 5, 6, 12, 19, 27,
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41, and 61 real eigenvalues. The asymptotic be-

havior of R
(m)
n still obeys a power-law expression

R(m)
n ≈ α

(m)
+

(
ζ
(m)
+

)n

. (17)

Taking the logarithm of (17) provides

lnR(m)
n ≈ lnα

(m)
+ + n ln ζ

(m)
+ . (18)

Expanding lnR
(m)
n in the limit q → 0 for succes-

sive and large enough values of n gives access to

the Taylor expansion of lnαm
+ and ln ζ

(m)
+ . This

operation can be repeated for various values of m.

The variation with m of the results indicates that

ζ
(m)
+ → χ∗ ζm∗ , (19)

α
(m)
+ → δ∗ γm

∗ , (20)

leading to the final asymptotic approximation

R(m)
n ≈ δ∗ (γ∗)m (χ∗)n (ζ∗)mn . (21)

We have found (the expansion of the logarithms

are kept for use in Section 6, for the assessment of

the Mean Time To Failure)

ln ζ∗ = −q6 + q8 + q9 + 2 q10 − 2 q11

− 25

2
q12 − 6 q13 + 21 q14 + 35 q15

+
109

2
q16 − 60 q17 − 1949

6
q18

− 258 q19 + 510 q20 + · · ·
lnχ∗ = 2 q6 − 3 q8 − 2 q9 − 6 q10 + 4 q11

+ 44 q12 + 24 q13 − 82 q14 − 126 q15

− 447

2
q16 + 174 q17 +

4379

3
q18

+ 1310 q19 − 2333 q20 + · · ·
ln γ∗ = q6 − q8 − 2 q9 − 4 q10 + 4 q11

+
45

2
q12 + 16 q13 − 35 q14 − 90 q15

− 315

2
q16 + 144 q17 +

2440

3
q18

+ 842 q19 − 1047 q20 + · · ·
ln δ∗ = −2 q6 + 3 q8 + 4 q9 + 12 q10

− 8 q11 − 77 q12 − 60 q13 + 128 q14

+ 316 q15 +
1293

2
q16 − 404 q17

− 10628

3
q18 − 4052 q19 + 4360 q20 + · · ·

Equation (21) has been checked with known

exact values obtained in the preceding Sec-

tions. The agreement is quite satisfactory for

small q’s and even moderately large values of

m and n. With respect to our previous study

Malinowski and Tanguy (2022), we observe that

lnχ∗ and ln γ∗ are not identical anymore. The

reason is that the 3 × 2 structure is not symmet-

rical when we interchange m and n. One expects

the behavior given in (21) to hold for patterns

that are not symmetric; otherwise one would have

χ∗ = γ∗ as in the r = s = 2 configuration.

In three-dimensional (r,s,t)-out-of-(m,n,l):F sys-

tems, (21) is likely to generalize as a multi-power-

law expression, with a (ζ∗)
mn l

prevailing term.

5. Results for various values of r

5.1. Methodology

In the preceding Section, we obtained a sim-

ple asymptotic expression (21) for the availabil-

ity/reliability of a (3,2)-out-of-(m,n):F system.

Each value of ζ∗, χ∗, γ∗, and δ∗ depends explic-

itly on the unavailability q. These parameters also

depend implicitly on the specific values r = 3 and

s = 2. Our aim in this section is to make some

progress in the knowledge of the dependence on r

of these expansions.

We have therefore performed the same calcula-

tions and processing of the results for r = 4 and

s = 2, with m going from 4 to 13. The degrees

of the recurrences were successively 2, 3, 4, 5,

6, 9, 13, 20, 28, 39. Unsurprisingly, the general

behavior of (21) was found again, however with

different expressions for ζ∗, χ∗, γ∗, and δ∗.
We proceeded similarly for r = 5 and s = 2,

for 5 ≤ m ≤ 14, with recurrences of order 2, 3,

4, 5, 6, 7, 10, 14, 21, 29. For r = 6 and s = 2,

while 6 ≤ m ≤ 15, the successive orders are 2, 3,

4, 5, 6, 7, 8, 11, 15, 22. We observed for the cases

r = 7 and r = 8 the same behaviors, in which

the orders of the recurrences increase less rapidly

than for lesser values of r. The compilation of

all the resulting expansions of ln ζ∗, etc. allowed

us to derive the expressions given in the next

subsection.
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5.2. Expansions of ζ∗, χ∗, γ∗, and δ∗ as
functions of r, for s = 2

After a few polynomial interpolations, one gets

ln ζ∗ = −q2r (1− q2)

+ q3 r (1 + 2 q − 2 q2 − q3)

+ q4r
[
−6 r + 5

2
− 6 q + (6 r + 3) q2

+ 6 q3 − 6 r + 1

2
q4
]
+ · · · (22)

lnχ∗ = q2r [(r − 1)− r q2]

+ q3r
[−(r − 1)− 2 r q + 2 (r − 1) q2 + r q3

]

+ q4r
[
9 r2 + 2 r − 5

2
+ 8 r q

− (9 r2 + 3 r − 8) q2 − (8 r − 4) q3

+
9 r2 + 4 r

2
q4
]
+ · · · (23)

ln γ∗ = q2r (1− q2)

− 2 q3 r (1 + 2 q − 2 q2 − q3)

+ q4r
[
10 r + 11

2
+ 16 q − (10 r + 5) q2

− 16 q3 +
10 r − 1

2
q4
]
+ · · · (24)

ln δ∗ = −q2r [(r − 1)− r q2]

− 2 q3r
[−(r − 1)− 2 r q + 2 (r − 1) q2 + r q3

]

− q4r
[
15 r2 + 6 r − 11

2
+ 20 r q

− (15 r2 + 5 r − 22) q2 − (20 r − 12) q3

+
15 r2 + 4 r

2
q4
]
+ · · · (25)

These expressions could be useful for evaluat-

ing the availability not only when m and n

are very large, but even when they are moder-

ately so, because q is small in most practical

cases. Going back to the r = s = 2 case

(Malinowski and Tanguy, 2022), one should get

χ∗ = γ∗. This is not obvious at first sight from

the above equations, but it actually works, because

the decompositions in powers of qr mix things for

these two quantities.

Keeping the prevailing term when q → 0 gives

R(m)
n (r, s = 2) →

exp
(−(n− 1) (m− r + 1) q2r

)
×(1 + smaller terms in O(q)) (26)

6. Application of the results: the Mean
Time To Failure

In the preceding Section, we have obtained an

analytical expression for the asymptotic reliability

of a (r,2)-out-of-(m,n):F system. One could also

use the exact results for a better definition of

upper and lower bounds, following the method

of (Malinowski, 2021). From the exact expression

of the reliability or availability (depending on the

context), we could also address the total system

failure rate ν for repairable systems (Yuge et al.,

2000), using the formula valid for identical ele-

ments with a failure rate λ

ν = λ p
dR

(m)
n

dp
= −λ (1− q)

dR
(m)
n

dq
(27)

In this Section, we consider a key performance

index of the system, namely the Mean Time To

Failure (MTTF) and assume that all equipments’

lifetime distributions obey a Weibull law with a

form factor β, that is q(t) = 1 − exp
(−(λ t)β).

The usual formula

MTTF =

∫ ∞

0

R(t) dt (28)

can be rewritten after a change of variable as

MTTF =
1

λ

∫ 1

0

R
(m)
n (q)

1− q

× 1

β
[− ln(1− q)]

1
β−1

dq . (29)

When n and m are large, one can replace

R
(m)
n (q) by the expression in (26). Only in the

region q → 0 does the integrand have a mean-

ingful contribution, and the prevailing term to be

summed is essentially

1

β λ
q

1
β−1 e−(n−1) (m−r+1) q2r .

Using X = (n−1) (m− r+1) q2r as a new vari-

able (the upper bound can then be safely replaced
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by +∞) allows the determination of the asymp-

totic MTTF in (r,2)-out-of-(m,n):F systems

MTTF(r, s = 2) →
1

λ

Γ
(
1 + 1

β 2 r

)

[(n− 1) (m− r + 1)]
1

β 2 r

(30)

While this result is the prevailing term in the

asymptotic expansion of the MTTF, one should

recall that there are extra O(q) terms in the in-

tegrand, leading to corrections with a n and m

dependence that vanish very slowly. When m =

r − 1, the MTTF is expected to be infinite, so that

the formula exhibits the correct behavior.

Because of the form of (30), and the symmetry

of the problem when swapping m and n, as well

as r and s, it is natural to expect that in the general

(r,s)-out-of-(m,n):F case, one should obtain

MTTF(r, s) →
1

λ

Γ
(
1 + 1

β r s

)

[(n− s+ 1) (m− r + 1)]
1

β r s

(31)

The decrease of the MTTF with m and n is very

slow. Preliminary calculations for 3 ≤ s ≤ 5

confirm (31). This expression can be easily gen-

eralized for three-dimensional (or larger) systems.

7. Conclusion and outlook

We have proposed a derivation of the exact re-

currence relations of the availability of (r,2)-out-

of-(m,n):F lattice systems, thereby extending the

results of our previous endeavor concerned with

r = 2. The obtained results could provide helpful

upper and lower bounds of configurations with

large values of m, as proposed by (Malinowski,

2021). Our asymptotic, power-law expression (21)

can give accurate values with a minimum numer-

ical effort, even for repairable systems. We have

determined the prevailing term in the asymptotic

expansion of the MTTF, in agreement with numer-

ical values even when m and n are not very large.

This work can be extended in several directions.

Firstly, we have already begun to consider larger

values of s: 3, 4, 5. It appears that in the case

s = 3, the eigenvalues are not all real anymore,

as they are in the s = 2 case. The dependence of

the logarithms of ζ∗, χ∗, γ∗, and δ∗ with q and r is

not as simple as in (22)–(25) and requires further

study. Our procedure can also be used for “circu-

lar” two-dimensional systems. Finally, it would be

useful to have a better picture of ζ∗(q) for non-

vanishingly small values of the unavailability q.
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