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Probabilistic Safety Analysis (PSA) is an efficient tool for assessing, maintaining and improving the Nuclear Power 
Plant (NPP) safety. In the literature, different PSA applications have been identified such as: PSA to support NPP 
testing and maintenance planning and optimization, PSA as a tool to monitor level of safety or PSA as a predictive 
evaluation of risk. In general, these applications require analyzing aging trends, updating reliability parameters and 
maintenance related to safety equipment. An indispensable tool in PSA is the software such as RiskSpectrum or 
CAFTA which are widely used in NPP. The main problem with the use of commercial software is its lack of 
flexibility in modelling. In this context, the use of tools like surrogate models, or metamodeling, emerges as a tool 
that can improve realism in probabilistic safety analysis. In this approach, the PSA code is substituted by a 
metamodel in order to obtain the risk measures of interest. In this paper, different metamodels have been considered 
which have been trained to predict the Core Damage Frequency (CDF). The performance of the different models is 
evaluated using three quality metrics (Root Mean Square Error, Mean Absolute Error and Mean Absolute 
Percentage Error) which have been evaluated using k-fold cross-validation technique. The results obtained 
demonstrate the capacity of the metamodels to provide accurate and computationally efficient estimates of CDF. 
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1. Introduction 
Probabilistic Safety Analysis (PSA) is an efficient 
tool for assessing, maintaining and improving the 
Nuclear Power Plant (NPP) safety. In the 
literature, different PSA applications have be 
identified such as: PSA to support NPP testing 
and maintenance planning and optimization, PSA 
as a tool to monitor level of safety or PSA as a 
predictive evaluation of risk. In general, these 
applications require analyzing aging trends, 
updating reliability parameters and maintenance 
related to safety equipment (IAEA, 2001). 

PSA are typically large models developed 
using event tree representations together with 

fault tree models. An indispensable tool in PSA is 
the software such as RiskSpectrum or CAFTA 
which are widely used in NPP. The main problem 
with commercial software such as these is its lack 
of flexibility in modelling. They do not consider 
failure rate models explicitly depending on aging 
and the effectiveness of maintenance and asset 
management policies, nor the effect of 
surveillance effectiveness on the availability of 
safety equipment. In addition, the use of the 
original PSA model can imply a high 
computational cost. In this context, the use of 
advanced computational techniques such as 
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machine learning emerges as a tool that can 
improve realism in probabilistic safety analysis.  

The applicability of artificial intelligence 
(AI) and machine learning (ML) in operating 
nuclear plants is explored at NUREG/CR-7294 
(Ma et al., 2022). In this report, the authors review 
the recent applications of AI&ML in different 
fields of nuclear industry and identify three main 
technological application fields: 1) Plant safety 
and security assessment, 2) Plant degradation 
modelling, fault and accident diagnosis and 
prognosis and 3) Plant operation and maintenance 
efficiency improvement. 

This paper focuses on the use of supervised 
ML algorithms to generate a surrogate model, 
metamodel or emulator, to substitute the PSA 
code to obtain the risk measures of interest (e.g. 
Core Damage Frequency (CDF)).  

In literature, different surrogate models have 
been proposed (James et al., 2017). In this paper, 
four metamodels are considered (Generalized 
Additive for location, scale and shape, K-Nearest-
Neighbor, Support Vector Regression and 
Extreme Gradient Boosting). The models have 
been trained to predict the CDF using 10000 
simulations obtained by applying a PSA code 
with 595 input variables corresponding to basic 
events which have been modelized according to 
one distribution probability. To evaluate the 
performance of the different models, three quality 
metrics have been considered, Root Mean Square 
Error (RMSE),  Mean Absolute Error (MAE) and 
Mean Absolute Percentage Error (MAPE), which 
have been evaluated with k-fold cross-validation 
technique. The results obtained demonstrate the 
capacity of the surrogate models to provide 
accurate and computationally efficient estimates 
of CDF. Finally, the selection of the best 
surrogate model is made using the Taylor 
diagram.  

The paper is organized as follows. First, a 
brief introduction of PSA is given in section 2. 
Section 3 presents the different machine learning 
algorithms used, the performance metrics and 
Taylor diagram. In section 4 the case of 
application and the results obtained are showed. 
Finally, section 5 presents the concluding 
remarks. 

 

2. Probabilistic Safety Assessment  
The PSA of a nuclear power plant is a risk 
analysis technique that allows to estimate 
quantitatively the risk of a nuclear power plant. 
This risk is traditionally defined as the probability 
of an accident multiplied by the consequences that 
result from it. PSA is based on the combined use 
of Event Tree (ET) and Fault Tree (FT). Event 
trees characterize the success and failure 
relationships of safety-critical systems, while 
fault trees are used to calculate the failure 
probability of systems based on the probability 
data of the components. This approach has been 
proven adequate for analyzing accidents in 
nuclear reactors, whose safety relies on multiple 
and redundant safety systems (Keller & 
Modarres, 2005). 

The nuclear industry PSA distinguishes 
three levels. In this paper, th analysis is focused 
on Level 1, which estimates the frequency of 
accidents that cause damage to the core, the sum 
of which is commonly known as the CDF, and at 
full power where the initiating events take place 
in the reactor operating mode. 

Various authors have pointed out the 
usefulness of PSA in evaluating the effects of 
aging on plant risk (Kančev & Čepin, 2012, 
Martón et al., 2015) and the importance of 
including reliability and unavailability models of 
time-dependent safety components that also 
incorporate the effect of maintenance and testing 
programs and their corresponding effectiveness 
(Martorell et al., 2018).  

However, standard PSA does not address 
adequately these issues. For example, current 
practice in PSA modelling considers constant 
failure rates instead of explicit age dependent 
failure rates of safety related equipment.  

In addition, they do not formulate explicitly 
how a large variety of surveillance, maintenance 
and inspection programs, which are intended to 
mitigate or at least keep under control the effects 
of equipment ageing, impact on failure rates. To 
consider the above aspects a surrogate model 
could be useful. Thus, the standard PSA model 
could be replaced by a surrogate model, which 
would allow formulate explicitly, for example, 
the effect of surveillance and maintenance 
programs in equipment ageing. 
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3. Methods 
As pointed out in the introduction, in this paper, 
the performance of four metamodels are 
evaluated in order to predict the CDF.  These 
metamodels are: generalized Additive models of 
Location, Scale and Shape, k-Nearest Neighbors, 
support vector regression and extreme gradient 
boosting.   

The above metamodels depend on a set of 
parameters called hyperparameters. To optimize 
these parameters the cross validation method has 
been applied.  

The brief descriptions of the highlighted 
methods are presented in the following 
subsections. In all models,   is the matrix of 
inputs (independent variables),  is the vector of 
output  (dependent variable),  the sample size 
and  the number of inputs.   

3.1. Generalized additive models of location, 
scale and shape  
Generalized additive models of Location, Scale 
and Shape (GAMLSS) (Rigby & Stasinopoulos, 
2005) are a type of semi-parametric regression 
that corrects some of the limitations of 
generalized linear models and generalized 
additive models allowing the modelling of 
dependent variables whose distribution does not 
belong to the exponential family or which present 
heterogeneity. The GAMLSS are semi-
parametric models since, although they require 
establishing a parametric distribution model of 
the response variable, modelling the distribution 
parameters as a function of the independent 
variables may involve non-parametric functions, 
such as smoothing functions. 

The GAMLSS models assume that the 
dependent variable ( ) has a density function that 
can be defined by up to 4 parameters (�, �, � and 
�) which determine the location, scale and shape 
(skewness and kurtosis), respectively. These 
parameters can vary depending on the values of 
the independent variables. Thus, for  
observations of  the conditional density function 
is given by   being  . 
Then if  represents the  distribution: 

 

(Rigby & Stasinopoulos, 2005) define the 
original formulation of GAMLSS model as: 

for  being  a monotonic 
link function that relates the distribution 
parameter  to the predictor , and  is an 
unknown function of the independent variables 

. 
From Eq. (1) other extensions of the 

GAMLSS model can be obtained. Thus, a non-
linear semi-parametric model is obtained by 
substituting the linear term for non-linear 
parametric terms: 

The different parameters of GAMLSS 
models are estimated maximizing the penalized 
likelihood function (Stasinopoulos & Rigby, 
2008). 

3.2. k-Nearest Neighbors  
k-Nearest Neighbors (KNN) is a 
nonparametric regression method which works on 
the basis that the similar samples are distributed near 
to each other in feature space. The simplest 
approximation of KNN regression is based on the 
evaluation of the average of the dependent variable 
values of the K nearest neighbors.  Other approaches 
have been proposed in the literature, such as the use 
of an inverse distance weighted average of the K 
nearest neighbors.  

The basis of this method is to calculate a 
similarity measure, for example, using distance 
functions. The most common distance functions 
are: Euclidean, Manhattan and Minkowski. The 
normalized Euclidean metric is generally used 
which is evaluated as:  

    (3) 

where  and  are represented  by vectors 
 and 

. 

3.3. Extreme Gradient Boosting  
The Extreme Gradient Boosting (XGBoost) is one 
of the most popular boosting tree algorithms for 
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gradient boosting machine (GBM) (Friedman, 
2001).  It generates a weak learner at each step of 
the algorithm, and accumulates it into the final 
models. Thus,  XGBoost uses many additive 
functions to predict the dependent variable as: 

                  (4) 

 where  is a regression tree and   
represents the score given by the m-th tree to the 
i-th observation.  

Objective function used in XGBoost is the 
sum of the loss function and the regular term 
which control the accuracy and complexity of the 
model, respectively: 

(5) 

 is the loss function and  is evaluated as: 

 

 and  are parameters controlling penalization 
for the numbers of leaves  and magnitude of leaf 
weights , respectively. 

3.4. Support Vector Regression 
Support Vector Regression (SVR) is a flexible 
and powerful machine learning algorithm that can 
handle both linear and non-linear relationships 
between input and output variables. Given a data 
training set, the goal of SVR (Vapnik 1995), is to 
find a function  that has at most ε deviation 
from the dependent variable values  for all the 
training data: 

where  represents the non-linearity 
mapping. 

The parameters of the Eq. (7) can be 
obtained solving the optimization problem:  

being  and  slack variables 
(Smola & Schölkopf , 2004). 

The above optimization problem can be 
formulated using the Lagrange multipliers as: 

where  represents a nonlinear 
kernel function, such as the radial basis function 
(RBF) kernel, which maps the input from a lower 
dimension feature space into a higher dimension. 

3.5. Performance metrics 
The performance metrics used in this study to assess 
the different metamodels are as follows:  

� Root Mean Square Error (RMSE) which 
measures the error between the estimation of the 
model and the true value 

               (10) 

� Mean Absolute Error (MAE) which is a measures 
of how accurate the predict values are compared 
to the observed ones. 

               (11) 

� Mean Absolute Percentage Error (MAPE) which 
is an accuracy measure based on the relative 
percentage of errors.  

To select the best surrogate model a Taylor 
diagram (Taylor, 2001), which summarizes 
multiple aspects of model performance in a single 
diagram, is used. The diagram provides a concise 
statistical summary in terms of  correlation,  root-
mean-square difference and the ratio of their 
variances which can be used to compare the 
performance of different surrogate models. 

4. Application case  
This application case is focused on obtaining a 
metamodel that represents the Core Damage 
Frequency (CDF) of a nuclear power plant as a 
function of the most important basic events. 
Simulations of a Level 1 PSA of a Power Water 
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Reactor (PWR) were used to obtain a representative 
sampling using a commercial PSA code.   

As a preliminary step to sampling, the most 
important basic events with respect to CDF were 
studied and selected using a commonly used 
measure in the importance analysis, the Fussell-
Vesely measure (Van der Borst  and Schoonakker, 
2001). 

The set of training observations (10000 
observations) were used to obtain the different 
metamodels.  The number the inputs is equal to 595 
variables corresponding to the most important basic 
events which have been modelized according to one 
distribution probability.  

Figure 1 shows the histogram, the 
probability density function estimated, the mean,  
and 5th and 95th percentiles obtained using the 
10000 simulations.  

 

Fig. 1. Histogram and density function of CDF. 

The training simulations were randomly 
partitioned into two groups: 80% of the 
simulations (8000 runs) were used for training  
and the 20% (2000 runs) were used for testing. 
For some metamodels (see section 3) the tuning 
of some hyper-parameters is required which has 
been performed using a cross validation strategy. 

The performance of the different 
metamodels on the test set is summarized in Table 
1. GAMLSS and SVR have the best results with a 
very good overall accuracy, as, for these methods, 
MAPE (%) are approximately equal to 0.5%. The 
same conclusion is obtained if the values of the 
RMSE and MAE are analyzed. 

Also, the Taylor diagram is used to evaluate 
each model performance (Figure 2) and select the 
best. All models, except KNN, have good 
correlations with observations above 0.95. The 
green contours indicate the RMS values and it can 
be seen that in the case of the  GAMLSS and SVR 

the RMS error is less than about 2E-7 hr-1. The 
standard deviation of the predictions obtained 
with the surrogate models is proportional to the 
radial distance from the origin Again, the two 
aforementioned models the best behavior since 
they have similar standard deviations to the 
observed standard deviation. 

Table 1. Performance metrics of the different 
surrogate models. 

Model RMSE 
(yr-1) 

MAE 
(yr-1) 

MAPE 
(%) 

GAMLSS 1.732E-07 4.177E-08 4.462E-01 
KNN 7.127E-07 5.701E-07 6.102 
SVR 5.973E-08 4.771E-08 5.091E-01 
XGBoost 1.732E-07 1.379E-07 1.475 
  

 

 
Fig. 2. Taylor diagram displaying a statistical 
comparison with observations of five surrogate models.  

Thus, if the GAMLSS is selected as the 
surrogate model and 10000 simulations are 
performed with the model and compared with the 
observed data a similar behavior is observed. 
Figure 3 shows the histograms of the observed 
CDF and predictions using GLM model. Figure 4 
shows the scatterplot of the observed and 
predicted CDF being the Pearson correlation 
coefficient  equal to 0.99, indicating a good model 
prediction. The same conclusion can be obtained 
by looking at the box plot shown in Figure 5. 

CDF (year-1)

GLM    GAMLSS    KNN    SVR    XGBoost
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Fig. 3. Histogram of observed vs GAMLSS predictions.  

 

 
Fig. 4. Observed vs Predicted CDF using GAMLSS 
model. 

 
Fig. 5. Box plot of observed and predicted CDF. 

10. Concluding remark 
This paper presents the capability of the metamodels 
to obtain a reliable representation of the risk measure 
of interest, in this application case the core damage 
frequency (CDF) of a plant, as a function of the most 
important basic events and to substitute the 
commercial code PSA by a metamodel in order to 
obtain the risk measures of interest.  

Four metamodels are evaluated in order to 
predict the CDF : GAMLSS,   extreme gradient 
boosting, k-Nearest Neighbors, and support 
vector regression. GAMLSS and support vector 
machine have similar results, obtaining good 
correlations.  

The results obtained in the application case 
show that surrogate models could be adopted to 
substitute PSA code which would allow its use in 
advanced applications of the PSA such as living 
PSA or Ageing PSA (APSA) providing rapid and 
usable decision support to decision making. 
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