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Autonomous driving has been among the most actively researched topics over the past decades. Today, automotive
vehicles are already equipped with driving assistance systems with partial autonomous driving capabilities. Thus,
the need for quantitative and qualitative assessment of automated driving functions becomes increasingly vital. The
used hardware and software must undergo vigorous safety assessments with regard to reliability and safety. This
must be done under careful consideration of driving scenarios and environmental conditions. The safety of the
intended functionality (SOTIF) standard, which is developed under the corresponding ISO 21448 standard for road
vehicles, lies at the center of these considerations. SOTIF deals with the question of how a target function needs to be
specified, developed, verified, and validated so that it can be considered sufficiently safe. As a good starting point,
we suggest regarding the individual failure probabilities for each of the components comprising the autonomous
driving system. Based on the failure probabilities of each component, it is possible to make assumptions about the
failure probability of the system as a whole and even identify possible deficiencies.
In this contribution, we aim to identify the typical components needed for an autonomous vehicle (AV) and further
provide a comprehensive overview of failure probabilities for said components. Certainly, it would go beyond
the scope of this work to create a statistically firm data basis by individually testing all components until failure,
especially when taking into consideration that the failure probabilities of each component vary over time and with
environmental conditions. Instead, the relevant factors with regard to the typical failure modes are identified and
relevant data is accumulated from publications that reflect the current state of the art.
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1. Introduction

As autonomous driving technology continues to

move forward, one of humanity’s goals is slowly

creeping into reach. With autonomous driving fea-

tures hitting the streets, a milestone in urban trans-

portation is reached. The dream of commuting

to work in a fully autonomous vehicle (AV) that

swiftly navigates through traffic while reading the

newspaper and drinking a cup of coffee is closer

than ever.

The levels of autonomous driving are classified

by the Society of Automotive Engineers (SAE) 1.

The SAE defined six levels of autonomous driv-

ing:

• Level 0: No driving automation

• Level 1: Driver assistance

• Level 2: Partial driving automation

• Level 3: Conditional driving automation

• Level 4: High driving automation

• Level 5: Full driving automation

These days, modern vehicles are often equipped

with level 2 functionality. They are therefore

capable of autonomous steering and accelerat-

ing/decelerating, whilst the driver is 100% atten-

tive and can take control of the vehicle momentar-

ily if needed.

More recently, Mercedes-Benz is the first com-

pany to meet the demanding legal requirements

to get level 3 automated driving approved in the

United States (USA) and Europe 2. To engage

their “Drive Pilot”, drivers must keep their faces

visible to the vehicle’s in-car cameras at all times,

but can also turn their heads to talk to a passen-

ger or play a game on the vehicle’s infotainment

screen. The SAE level 3 “Drive Pilot” can be acti-

vated in heavy traffic on suitable highway sections

at speeds of up to 60 km/h in Germany or 40mph

in Nevada in the USA.
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But it has become clear in recent years, that

there is a risk involved when using autonomous

driving features. Anyone who has tried the au-

tomatic steering feature of a modern car can re-

late. Everything is working as intended until the

requirements for automatic steering are no longer

met. In fact, there are reports of deadly accidents

that occur while using autonomous driving fea-

tures. Consequently, an uncomfortable question

remains: Is this safe?

Moreover, typical drivers overestimate their

own driving abilities and therefore do not accept

an autonomous system that performs as well as

an average driver. Therefore, AV systems must

exceed the safety standards of human drivers to

be considered reliable and trustworthy.

The truth of the matter is, that autonomous

driving is still under heavy development even

though, to this day, it is among the most actively

researched topics. Accidents are inevitable and

with lives at stake, the need for a quantitative and

qualitative assessment of safety-relevant features

becomes increasingly vital. The used hardware

and software must undergo vigorous safety as-

sessments with regard to reliability and safety.

However, due to the complexity of the matter,

this must be done under careful consideration of

driving scenarios and environmental conditions.

At the center of these considerations lies the

Safety of the Intended Functionality (SOTIF).

The SOTIF standard for automotive road vehicles,

which is developed under the corresponding ISO

21448 standard for road vehicles, is defined as

the absence of unreasonable risk due to a hazard

caused by failures and/or functional insufficien-

cies of the intended functionality 3. This includes

the specification of the intended functionality at

the vehicle level as well as the specification and

performance of system components. It is stated,

that ISO 26262 provides requirements and recom-

mendations to avoid and control random hardware

failures as well as systematic failures that could

violate safety requirements. Where ISO 26262-

1 defines functional safety as the absence of un-

reasonable risk due to hazards caused by mal-

functioning behavior of the electric or electronic

system. To identify hazards at the vehicle level,

ISO 26262-3 provides guidance on performing a

Hazard Analysis and Risk Assessment (HARA).

A possible approach for the assessment is to

consider the individual failure probabilities and

failure rates for each of the components com-

prising the autonomous driving system 4. On the

basis of the individual failure probabilities, as-

sumptions with respect to the failure probability

of the system as a whole can be made and possible

weak points in the system can be identified. Con-

sequently, we provide a derivation from public

sources to estimate the failure rates of the individ-

ual components that can serve as a starting point

for the evaluation of the reliability of the AV.

In Section 2 we will review the state-of-the-

art literature on failure probabilities and failure

rates. In Section 3 the basic components used in

AVs will be discussed, followed by a discussion

of how their failure can be modeled in Section 4.

This will include analyzes of public data on car

deficiencies and autonomous driving disengage-

ments, to estimate accurate failure statistics. Fi-

nally, in Section 5 we provide a summary of our

findings, limitations, and future directions.

2. Related Work

Several researchers have focused on the safety

analysis of AVs, however, concrete data on failure

probabilities of individual components or func-

tions is hard to come by since most Original

Equipment Manufacturers (OEMs) don’t make

their testing data public. Bhavsar et al. 5 reviewed

the public literature and publicly available data

sources to compile a list of failure probabilities

that he used to perform a fault tree analysis of

the failure of AVs, including external factors like

infrastructure and other road users. One has to

be very careful when using this data for other

purposes since some of the sources are extremely

outdated while others are theoretical studies that

don’t aim to provide accurate failure probabil-

ities. For instance, the failure probability given

for the radar in 5 is based on a publication

from 1954. Technology has improved consider-

ably since then, thus, this value is not likely to

represent the reliability of current radar systems

in AVs. Another example is the failure probabil-
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ities provided for the lidar and the camera, for

which the source publication of the data states

that their values are arbitrary and might not repre-

sent the real world. An estimation of failure rates

computed from those probabilities was performed

by Häring et al. 6. However, since their study

was focused on methods for safety assessment

of AVs through Markov modeling, they did not

need precise and/or accurate values and assumed a

time frame of 10 years to convert the probabilities

to rates, which may not reflect the experimental

conditions of the source publications.

The accuracy and robustness of artificial intelli-

gence (AI) algorithms have also been extensively

studied. However, this is a constantly and fast-

evolving field. A fatal Tesla accident shows how

important the accuracy and robustness of AI algo-

rithms are. Here, an error occurred in the percep-

tion module in the form of the misclassification of

a white trailer as part of the sky and caused one of

the first autonomous driving fatalities 7. Various

real-world datasets for testing the algorithms ex-

ist, such as the Audi Autonomous Driving Dataset

(A2D2) 8 or the German Traffic Sign Recognition

Benchmark (GTSRB) dataset for traffic sign clas-

sification 9. These datasets can be used to evaluate

current and new neural networks and deep learn-

ing methods in the field of autonomous driving 10.

3. Components of AVs

Ultimately, it should be possible to navigate a car

fully autonomously with high-definition cameras

only, after all, a taxi driver only has two eyes as

well 11. The more sophisticated the data process-

ing becomes, the less hardware is needed. When

selecting sensors many boundary conditions need

to be considered and sensors that complement

each other can be utilized advantageously. There-

fore, in this section, we will examine the hardware

used by the most advanced players in the field of

autonomous driving.

Tesla has been making progress with its Au-

topilot system, using a minimalist approach. In

a middle-class Tesla Model 3, they use a total

number of eight cameras. Tesla began to transi-

tion to “Tesla Vision” by relying only on camera

vision for autonomous driving 11. Regrettably, this

approach has led to fatalities, but could ultimately

result in the most cost-effective solution to au-

tonomous driving.

Nevertheless, developers have different ap-

proaches when it comes to picking the necessary

hardware for autonomous driving systems. When

considering the recently approved level 3 auto-

mated driving system of Mercedes, a total of 27

sensors are used as shown in Fig. 1.

Fig. 1. Sensor setup of the Mercedes S-Class with the
“Drive Pilot” 12. The numbers are labeled as follows:
1) front long-range radar: opening angle 90° / 9°, 2)
stereo multi-purpose camera: opening angle 70°, 3) rear
multi-purpose camera: opening angle 50°, 4) ultrasonic
sensors: 12x opening angle 120°, 5) 360°-camera: 4x
single cameras with opening angle 180°, 6) driver cam-
era, 7) moisture sensor, 8) redundant electrical brake
and steering system, 9) multi-mode radar: 4x opening
angle 130°, and 10) lidar: opening angle 120°.

When considering a third big player, namely

Audi, commonalities become visible. In their

2018 Model Audi A8, the list of sensors is sim-

ilar to the one from Mercedes. Multiple cameras

are used to achieve a 360° vision, multiple front-

facing cameras with different opening angles are

used to enable near and far field vision as well as

stereo vision depth sensing, ultrasonic sensors are

used to detect approaching objects during parking

maneuvers, and multi-mode radar or laser scan-

ners are used for reliable depth sensing to cross-

reference the collected camera-based depth infor-

mation.

It is crucial to consider the different sensor

types and also their fusion when determining the

failure probability of an AV. In principle, sensor
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redundancy is important and can prevent catas-

trophic failure.

4. Failure Modes/Metrics

4.1. Modeling failure

Two commonly used approaches for modeling

component failure are the bathtub curve and the

Weibull hazard function. The former is a theoreti-

cal curve that represents the likelihood of failure

over time and is characterized by three phases:

Early failure, random failure, and wear-out fail-

ure 13. The first phase is usually related to manu-

facturing flaws. The components that survive this

phase enter the next stage in which random fail-

ures predominate, these are assumed to be stress-

related. Finally, the wear-out failures gain rele-

vance as the components get older. A schematic

of the bathtub curve can be seen in Fig. 2.

Fig. 2. Depicts a typical Bathtub curve with early,
random, and wear-out failure.

The Weibull hazard function h(t), on the other

hand, is a mathematical function that can be used

to model the failure rate of a component over

time 14 and has different shapes depending on the

chosen parameters. The general expression can be

written as follows.

h(t) = αλ(λt)α−1 (1)

Where α is the shape parameter and λ is the

scale parameter. These two parameters define the

failure rate behavior. Considering α < 1 will

result in a decreasing failure rate over time. A con-

stant failure rate could be modeled by choosing

α = 1, while α > 1 will represent an increasing

failure rate. It is possible then to reproduce the

bathtub curve by using different Weibull hazard

functions with different shape and scale parame-

ters at different times. However, analytical expres-

sions of the bathtub curve can also be found in the

work of Suhir et al. 15.

Regardless of the failure model used, the main

problem that remains is choosing the correct pa-

rameters. To do so one needs access to reliable

experimental data, which is scarce in most cases,

as discussed in Section 2. In the following sec-

tions, we will dive into the sources of AV failures

and present some approaches to estimate failure

rates and probabilities from public data of yearly

inspections and AV disengagement reports.

4.2. Failure sources in AVs

On one hand, traditional failure sources of non-

autonomous cars remain possible points of fail-

ure. These would include failures in the brak-

ing system (e.g., brake pedal, vacuum pump or

compressor, electronic braking system), steering

system (e.g., electronic power steering, steering

gear, steering alignment, hydraulic system), or

lighting equipment (e.g., headlight source, projec-

tion system, electronics) among others. A detailed

study on these traditional sources can be found

in Section 4.3.

On the other hand, software is a centerpiece

in AV functions. As AVs include more and more

functionalities and sensors, the source of possible

failures grows exponentially. Autonomous driving

is based in large part on AI such as machine

learning and neural networks 16. Driving is an

action that requires a high level of awareness of

the surroundings (e.g., traffic lights, road lanes,

traffic signs) as well as a capacity to predict the

behavior of other road users. Of course, AI algo-

rithms that make all this possible are not exempt

from malfunctions. While detection algorithms

have improved dramatically in the last years, one

has to take into account that the algorithms needed

in the automotive industry are required to be real-

time (such as You Only Look Once (YOLO) al-

gorithms) and need to be optimized for the hard-

ware present in the AV. Accurate and standard-

ized data to quantify the failure rates of such

algorithms are hard to come by as their intricate
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details are mostly kept secret by the Original

Equipment Manufacturers (OEMs). Nevertheless,

in Section 4.4 we will analyze available public

data from AV testing in California, to get an idea

of the magnitude and sources of the malfunctions.

Last but not least, external factors will also in-

fluence the AV function. Bad weather like fog can

severely impact the visibility conditions, affecting

the object recognition algorithms based on camera

imaging. Snowfall or rain will influence the lidar’s

ability to accurately measure object distances 17.

Redundant sensing systems based on different

technologies can aid to overcome some of these

issues 18. For LiDAR and camera, Wu et al. 19

propose a LiDAR/camera sensor fusion system for

pedestrian detection in various environments. A

Vedolyne VLP-16 lidar and Logitech C920 cam-

eras (30 FPS) were used as input sensors, resulting

in an accuracy of 99.16% for 8,000 frames, which

is equivalent to 267 s. From these values, we can

compute the failure rates per hour with Eq. (2),

obtaining 1.14E−1 h−1.

λ =
−ln(1− F (t))

t
=

−ln(A(t))

t
(2)

where F (t) is the failure probability at time t and

A(t) is the complementary accuracy. These data

are representative (upper bound) as they satisfy an

error rate that would be lower with professional

equipment.

The road condition, construction sites, and un-

expected behavior of other road users will also

play a major role in the correct functioning of the

AV. For instance, we can estimate the frequency

of accidents with cyclists from the New York State

Department of Motor Vehicles crashes report from

2020 20, in which 938 bicyclist deaths and 38,886

bicyclist injuries in traffic crashes were reported

in the USA. When taking the average speed of

v = 97 km/h of a passenger car 21, and the

total distance of 5.28E12 km driven by vehicles

in 2020 22, we can determine a failure rate of

7.32E−7 h−1 according to Eq. (3).

λ =
N · v
D

(3)

Where N is the number of accidents and D

is the total vehicle kilometers traveled during the

studied time period.

Similarly, we can calculate a rate for pedestrian-

involved accidents. According to an National

Highway Traffic Safety Administration (NHTSA)

report 20, in 2014 there were 6,516 pedestrian

deaths and an estimated 54,769 pedestrian injuries

in traffic crashes in the USA. Following Eq. (3) the

resulting rate is 1.13E−6 h−1.

Regarding external factors like construction

sites, according to the Traffic Safety Evalua-

tion of Nighttime and Daytime Work Zones in

the USA 23, the crash rates in work zones are

generally higher than those in non-work zones.

Based on the published table, we can derive

the average crashes per hour in the USA which

is 9.32E−7 h−1, by multiplying the total num-

ber of accidents 267.40 at construction sites with

the average traveled speed at construction sites

72.42 km/h, divided by the total length of con-

struction sites 20.79E9 km.

According to the NHTSA 24, there were a total

of 5,376,000 crashes in 2015, of which 22% were

weather-related (i.e. weather was a contributing

factor in the crash). The total number of driven

kilometers in the USA in 2015 is 4.89E12 km 22.

According to Eq. (3), the weather-related failure

rate is 2.35E−5 h−1.

The summarized values for failure rates calcu-

lated in this section can be found in Table 1.

4.3. Yearly car inspections (Germany)

One approach to estimate failure rates over time is

to analyze public data on yearly car inspections.

Regular vehicle inspections are required to ensure

that vehicles on the road are safe and meet certain

standards in Germany, which are monitored by the

Kraftfahrt-Bundesamt (KBA), the federal agency

responsible for vehicle safety. The inspections

are conducted by authorized inspection centers,

which are certified by the KBA. The KBA is

responsible for the statistical processing of the

yearly reports from the inspection centers.

The age range of the car studied in the KBA

report 26 is: up to 3 years, over 3 to 5 years,

over 5 to 7 years, over 7 to 9 years, and over 9

years. Based on a study from Weimar et al. 27, the

expected lifespan of passenger cars is 16 years and
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Table 1. Overview of factors which can contribute to failures in AVs.

Factors Failure Modes
Failure rate

(1/h)

LiDAR & Camera Overlapping, connecting objects and segmentation algorithm 19 1.14E-1
Cyclists Yearly 110.9 million bike trips were made, where 39,824 accidents

involve cyclists. 20
7.32E-7

Pedestrians 61,285 crashes happened where pedestrians were at fault among the
annually 42 billion walking trips. 20

1.13E-6

Construction
zones

Maintenance of traffic control devices, driver behavior, and weather
around the construction zones. 23

9.32E-7

Weather Adverse weather conditions like fog, mist, rain, severe crosswind, sleet,
snow, dust/ smoke. 25

2.35E-5

was considered in determining the failure rates

presented in this study.

The data contained in the report pertains to all

automobiles throughout their existence, catego-

rized by the age of said vehicles. However, it is

imperative to transform the data into failure rates

per car and per hour with respect to the cars’

lifetime and according to the deficiencies of the

components and functions as per the following

equation.

hdef
[t1,t2]

=
N def

[t1,t2]

N[t1,t2](t2 − t1)
(4)

Where hdef
[t1,t2]

is the average failure rate for the

time interval [t1, t2], N
def
[t1,t2]

is the number of a

particular defect in that time interval, and N[t1,t2]

is the total number of inspected cars.

The resulting failure rates per component and

vehicle’s age have been computed and listed in Ta-

ble 2. The particular details of the listed subsys-

tems can be found on the KBA website 28. We

can observe a clear pattern of increasing failure

rates over time due to aging effects. The data does

not show the triphasic behavior characteristic of a

bathtub curve. This could be due to good quality

control by manufacturers and/or due to the data

averaging over the first three years, which could

factor in the low rate of random failures where we

would expect early failures.

4.4. AV disengagement vs driver
disengagement

The California Department of Motor Vehicles

(DMV) publishes an annual disengagement re-

port, which includes data from companies that

have been licensed to test autonomous cars on

public roads in California. 29 The report of 2021

outlines various types of disengagements from the

different companies that occurred during the test-

ing of AVs between December 2020 to November

2021. These disengagements have been meticu-

lously categorized based on their initiation, which

could be either by the autonomous system or the

test driver, and their underlying causes. The dis-

engagement rates per kilometer are derived by

dividing 6.59E6 km, the number of kilometers

driven, by the total number of AVs. Assuming that

the number of disengagements of an autonomous

system correlates with its failure rate, the data can

be contrasted as shown in table Table 3.

5. Conclusion

In this work, we have identified the typical com-

ponents needed for an AV by examining the state

of the art. Car manufacturers and their develop-

ers demonstrate best practices and thus provide a

good foundation for our analysis. Unfortunately,

it is difficult to find reliable failure rates for some

components, in which case publicly accessible

statistics, such as the “Fahrzeuguntersuchungen”

from the KBA and the autonomous driving dis-

engagement reports by the DMV, can be used to

estimate the failure rates. By assessing individual

components of the AV, while taking into account

the car’s architecture, a prediction can be made

about the safety of the vehicle. Thus we have

provided a starting point for the safety assessment

of an AV and a possible way to identify hardware

deficiencies. In the future, additional work in this

field could be done by generating synthetic data of
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Table 2. Average failure rate of subsystems of passenger cars for time intervals corresponding to main

inspection intervals (per car per hour) according to Eq. (4) and using data of the years 2018-2022. 26

Subsystems < 3 years 3 - 5 years 5 - 7 years 7 - 9 years over 9 years

Braking system 6.23E-07 7.26E-07 1.09E-06 1.32E-06 1.91E-06
Steering system 2.15E-08 2.45E-08 6.33E-08 1.30E-07 2.95E-07
Visibility conditions 2.92E-07 2.98E-07 2.93E-07 2.77E-07 3.06E-07
Lighting equipment and other parts of
the electrical system

1.16E-06 1.15E-06 1.59E-06 2.09E-06 2.71E-06

Axles, wheels, tires, suspension 8.11E-07 8.83E-07 1.12E-06 1.32E-06 1.68E-06
Chassis, frame, body, attached parts 1.14E-07 1.11E-07 2.13E-07 3.26E-07 1.21E-06
Other equipment 2.23E-07 2.08E-07 2.67E-07 2.65E-07 2.54E-07
Noise development 8.09E-09 9.15E-09 2.33E-08 5.18E-08 1.10E-07
Engine exhaust 1.15E-07 1.20E-07 1.77E-07 2.38E-07 4.63E-07
Other environmentally relevant items 1.61E-07 1.82E-07 3.49E-07 5.97E-07 1.46E-06

Table 3. Autonomous vehicles disengagements initiated by driver or autonomous

system with mean failure rates for different functionalities and components. 29

Functionality or Components
No. of Disengagements

Failure rates [1/h]
Driver AV Total

Perception 1138 91 1229 3.73E-03

Camera 6 0 6 1.82E-05
Database 0 3 3 9.10E-06
Environment 4 11 15 4.55E-05
GPS 1 0 1 3.03E-06
Lane detection 157 0 157 4.76E-04
Localization 290 4 294 8.92E-04
Map 1 0 1 3.03E-06
Object detection 645 63 708 2.15E-03
Positioning 33 0 33 1.00E-04
Sensor failure 1 0 1 3.03E-06
Sensor fusion 0 10 10 3.03E-05

Decision & Control 948 100 1048 3.18E-03

Control 15 1 16 4.86E-05
Other vehicles 69 0 69 2.09E-04
Path planning 619 50 669 2.03E-03
Prediction 30 0 30 9.10E-05
Software error 7 3 10 3.03E-05
Trajectory planning 208 46 254 7.71E-04

Vehicle Platform Manipulation 105 247 352 1.07E-03

Actuation 72 65 137 4.16E-04
Gears 0 1 1 3.03E-06
General system 22 0 22 6.68E-05
Hardware issue 5 48 53 1.61E-04
Software component 2 133 135 4.10E-04
System error 4 0 4 1.21E-05

failure scenarios using simulation software such

as Carla.
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