
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P400-cd

SynthiCAD: Generation of Industrial Image Data Sets for Resilience Evaluation of

Safety-Critical Classifiers

Berit Schuerrle

IAS, University of Stuttgart, Germany. E-mail: berit.schuerrle@ias.uni-stuttgart.de

Venkatesh Sankarappan

IAS, University of Stuttgart, Germany. E-mail: st180516@stud.uni-stuttgart.de

Andrey Morozov

IAS, University of Stuttgart, Germany. E-mail: andrey.morozov@ias.uni-stuttgart.de

Due to their versatility, Deep Neural Networks are becoming increasingly relevant for the industrial domain. How-
ever, there are still challenges hindering their application, such as the lack of high-quality training data and suitable
methods for assessing their robustness to internal computing hardware faults in safety-critical applications. To
address these challenges, this paper introduces (i) a new data generation tool SynthiCAD for creating customisable
image training data, along with an open-source industrial data set for classification generated by SynthiCAD. In
addition, (ii) we categorized and compared existing approaches to fault injection and evaluated software-based fault
injection using a VGG19 model trained on our new data set. Our findings show that software-based fault injection is
a fast and scalable way to assess the reliability of DNNs under the presence of faults.
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1. Introduction

With the continuous advancement of Artificial In-

telligence (AI), the industrial sector has shown

increasing interest in leveraging its potential ad-

vantages and applying it to various industrial ap-

plications. However, the implementation of AI in

industry still faces significant challenges. One of

them is the unavailability of suitable training data,

especially for computer vision tasks such as object

detection for quality control or classification for

automated item picking. The reason for this is that

collecting and labeling large quantities of training

data can be both expensive and resource-intensive,

and companies are often reluctant to share data

due to confidentiality concerns.

A second challenge is ensuring the robustness

of AI when implemented in safety-critical applica-

tions. Due to the black box nature of Deep Neural

Networks (DNNs), formal methods are not appli-

cable when assessing the reliability. A promising

approach to overcome this is the targeted introduc-

tion of faults into the system. Fault injection tools

allow the user to inject errors into a specific part

of the network and observe the systems behaviour.

At the moment, there is no structured overview of

these tools and their methods, making it difficult

to compare and evaluate the most suitable one.

To address these challenges, this paper makes

two contributions:

(i) Industrial Data Set and Generative Tool:

We introduce SynthiCAD, an open-source

tool, that allows the creation of customisable

image training data, which we used to gener-

ate a public data set specifically designed to

fit industrial applications.

(ii) Categorization and Evaluation of FI Tools:

We categorize existing fault injection meth-

ods for DNNs and evaluate software-based

fault injection on our new data set.

2. Data Set

The availability of high-quality training data is

one of the most critical bottlenecks limiting the

application of neural networks for industrial tasks.

Although there are several public data sets, suit-

able training data for the industrial domain is
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Table 1. Comparison of related Data Sets for Computer Vision.

Data set Size Classes RGB Real Labelled Content Industrial

ImageNet 14.2 Mio. 21,841 yes yes yes Misc. no
CIFAR100 60,000 100 yes yes yes Misc. no
CoCo 328,000 171 yes yes yes Misc. no
MVTEC ITODD 3500 28 no yes partially Industrial yes
Casting Product 7348 2 no yes yes Industrial yes
SORDI 800,000 80 yes no yes Logistics yes
SynthiCAD Data Set 100,000 10 yes no yes Industrial yes

scarce, as the collection and creation of this

data, particularly images, can be expensive and

time-consuming. Synthetic image generation is a

promising alternative to extensive data collection.

In this paper, we present SynthiCAD, a tool that

enables the automated creation of customised data

sets based on CAD models. We used this tool to

generate a new labelled data set, which we also

compare to other relevant computer vision data

sets.

2.1. Data Set Benchmark

Table 1 summarizes several well known data sets

for computer vision tasks. One of the most exten-

sive data sets is ImageNet, which contains over

14 million images and features numerous classes

ranging from common household objects to dif-

ferent animals and plants. Similarly, CIFAR-100

and the CoCo data set also focus on daily objects

and classes. However, for industrial applications,

these benchmark data sets are not suitable as they

do not offer industry-specific content.

When analysing the few existing industrial data

sets it becomes apparent, that they are often rel-

atively small, may not fully represent the diverse

range of industrial applications or lack sufficient

labeling. The Casting Product data set published

by Kantesaria et al. (2020), which aims to identify

defective parts in a casting product, suffers from

the common scarcity of negative or defect sam-

ples, resulting in a relatively small data set. Akar

et al. (2022) released an extensive Synthetic Ob-

ject Recognition Dataset for Industries (SORDI),

with currently more than 800,000 images and 80

classes. However, as this data was generated in

collaboration with the BMW group, it is highly

specific for the automotive and logistic sector,

making it not generalisable for other industry

related tasks. The Industrial 3D Object Detec-

tion Dataset, introduced by Drost et al. (2017),

provides a broad range of real images depicting

different objects in various scenes. However, the

labeling of objects in the images is only partially

complete, with some instances missing labels.

This lack of suitable benchmark data sets for

industrial applications has been a challenge for the

computer vision community. Through the intro-

duction of our newly generated data set and Synth-

iCAD for the customisable creation of individual

data sets we want to contribute to addressing this

shortcoming.

2.2. SynthiCAD

The foundation of our data generation tool is

based on BlenderProc, a python library developed

by Denninger et al. (2023), that utilises Blender’s

Python API to facilitate the automation of syn-

thetic data generation. The library provides a rich

set of functions and classes that users can lever-

age to create and manipulate 3D models, config-

ure scenes, and produce data for computer vision

tasks. BlenderProc is distributed under the MIT

License, making it open-source and available for

free to the community.

SynthiCAD, as illustrated in Fig. 1, imports 3D

object models in various formats, such as *.obj,

*.ply, and *.blend, and generates three different

labelled data sets - train, test, and validation data.

The user has the flexibility to adjust various pa-

rameters in the tool to tailor the generated data set

to their requirements. This includes (i) the number

of 3D models, (ii) the scene composition (e.g.



2201Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 1. This illustration presents the image rendering pipeline of SynthiCAD.

number of objects per scene), (iii) the splitting

ratio of the resulting data sets, (iv) the image res-

olution and output formats (COCO or .hdf5), (v)

different rendering settings for light and camera,

as well as (vi) various object properties like posi-

tion and material and (vii) the background scene.

SynthiCAD provides an easy-to-use configuration

file that allows selecting and adjusting these pa-

rameters. Through this, the user can customize the

tool to meet their specific needs and generate high-

quality synthetic data with ease.

2.3. Industrial Data Set

We utilized ten CAD models of industrial objects

from Drost et al. (2017) as input for our tool. The

selected objects include a diverse range of engine

parts and components such as screws, injection

pumps, and T-connectors. From these ten classes

we generated 10.000 images each, resulting in a

data set with 100.000 JPEG-images in total. The

images are distributed among three subsets: one

for training, one for testing, and one for validation,

with a ratio of 0.7, 0.2, and 0.1, respectively.

All images are RGB and have a resolution of

224x224. To ensure the suitability of our data set

for various computer vision tasks, we included not

only the class labels but also generated bound-

ing boxes and semantic masks for each image,

which are stored in a separate annotation file in

the coco format. Each image contains one instance

of the ten selected objects. Throughout the 10,000

images for each class, we randomly varied the

position of the object in the x-y-z direction and

the object’s rotation to provide a diverse range

of images. Figure 2 provides an example of the

data set, showing three different classes (a, b, c)

with three variations of the object’s position and

rotation. Additionally, we changed the object’s

surface to a smooth metallic texture, imitating

real industrial components. Lastly, we varied the

lighting conditions within each image, including

the position of the light sources, their energy, and

emission strength.

Our tool and the data set are open-source and

publicly available at: https://github.com/
mbsa-tud/SynthiCAD

Fig. 2. These images give an insight in the data set
showing three different objects (a, b, and c) with varied
positions.
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3. Fault Injection for Deep Neural
Networks

As neural networks are by definition ”black-box”

systems, formal approaches for the resilience as-

sessment are not applicable. A promising ap-

proach to overcome this is the targeted introduc-

tion of faults into the system. These so-called fault

injection tools allow the user to inject different er-

rors into a specific part of the network and observe

the systems behaviour. This section discusses the

state of the art regarding fault injection, introduces

concepts and methods and clusters the existing

tools and approaches.

3.1. Introduction to Fault Injection

Failures in memory or other parts of the com-

puting hardware for the deployment of a neural

network can cause silent data corruptions, which

can lead to perturbation of the output and result in

unreliable predictions of the network. These faults

can occur due to hardware or software failures as

well as environmental influences resulting in er-

roneous outputs. Fault injection methods involve

simulating such faults to identify potential vulner-

abilities before deployment, allowing for a more

resilient design of the system. This assessment

of the error resilience is especially relevant for

safety-critical systems, where even a single bit flip

can have severe consequences.

3.2. Classification of Fault Injection
Methods

There are various ways to classify the different

methods of inducing faults within a neural net-

work. One approach is to categorize them based

on the types of faults that can be injected. Deep

neural networks (DNNs) are primarily suscepti-

ble to faults in two areas: input data and net-

work computation. For input data, researchers like

Hendrycks and Dietterich (2018) have evaluated

the impact of image corruptions on the network’s

robustness. When it comes to the computation,

different fault types could occur, such as bit flips,

quantization errors, as well as packet losses in the

network or timing problems like jitter.

Another classification approach is based on the

location of the fault injection, as discussed in

Fig. 3. Classification of Fault Injection Methods.

Ruospo et al. (2020) and Ruospo et al. (2021).

Figure 3 summarizes this classification. There are

two broad categories of fault injection approaches:

software-based and hardware-based. Hardware-

based fault injection can be grouped into three

categories: injecting simulated faults at the regis-

ter transfer level, injecting simulated faults on an

emulated physical device, and physically inducing

faults on real hardware. These methods have been

demonstrated in studies like Ruospo et al. (2020),

De Sio et al. (2020), and Breier et al. (2018).

Software-based approaches do not require

knowledge of the specific hardware used and ei-

ther manipulate saved parameters of the network

(static fault) or corrupt the layer output during

inference (dynamic fault). In this paper we are

focusing on software-based fault injection, as our

further research aims to evaluate and uncover

weaknesses of the architectures in general rather

than a specific inference on certain hardware.

3.3. Software-based Approaches

We have identified and compared three openly

available tools (see Table 2), that allow a software-

based fault injection in DNNs. In the following

few chapters, each tool and it’s underlying prin-

ciple will be introduced.

3.3.1. Ares

Ares is a DNN-specific fault injection framework

first introduced by Reagen et al. (2018). Rather

than only offering the injection of faults, Ares

provides an entire framework for the resilience

assessment, including the training, fault injection

and evaluation. It addresses the three most promi-

nent fault points within a network: weights, acti-
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Table 2. This table compares the three software-based fault injection tools Ares, InjectTF and TensorFI.

Tool FI Location Fault types Supported Models

Ares SW Bit Flips, Noise, others* FC, Conv., GRU
InjectTF SW (Operations) Zero, Random Value, Bit Flips Add, Sub, Mul, ReLU
InjectTF2 SW (Layer wise) Bit Flips Sequential Models
TensorFI SW (Operations) Zero, Random Value, Bit Flips No limitations specified
TensorFI2 SW (Layers) Zero, Random Value, Bit Flips No limitations specified

*: extendable with own mathematical computations

vation and hidden states. It supports static faults

occurring in the weights during the training as

well as dynamic faults within the activations and

hidden states during the inference of a DNN.

For the static faults, Ares manipulates the saved

weights of the model, while for dynamic injection

of faults in the activation or state it uses element-

wise tensor operations. To this date, it supports

the injection in fully connected and convolutional

layers as well as GRU’s.

3.3.2. InjectTF(2)

InjectTF is a fault injection framework published

by Beyer et al. (2020) and is designed for inducing

faults into TensorFlow models. In accordance to

the TensorFlow versions, there are two frame-

works publicly available: InjectTF and InjectTF2.

InjectTF is a fault injector designed for Tensor-

Flow 1 models. The faults are injected by manipu-

lating operations such as Add, Sub, Mul or ReLU.

To do this, InjectTF builds a corrupted counterpart

of the initial graph by duplicating all operations

and wrapping the injected ones to manipulate their

results. Beyer et al. (2019)

The second framework, InjectTF2, is used for

the fault injection in Keras models and allows

layer-wise fault injection. To this date, it is lim-

ited to sequential models and bit flips. To inject

the faults in the desired output layer, the values

thereof are manipulated by flipping a specific or

random bit.

3.3.3. TensorFI(2)

Similar to InjectTF, TensorFI is a framework to

induce faults in TensorFlow models. It is also

implemented for both TensorFlow versions.

TensorFI works on an operation level for Ten-

sorFlow 1 models. It builds a replica of the ex-

isting graph with new operators, which allow for

the manipulation during the execution of these

operations.

TensorFI2 allows the layer-wise injection of

faults in Keras models. Besides static faults in the

saved weights and biases of the network, it is also

able to induce dynamic faults in the activations

during inference. It supports regular bit flips, zeros

or random values.

4. Evaluation

After illustrating the working principles of these

FI tools, we want to evaluate the performances

of software-based fault injection on our new data

set. For this, we have created a testing scenario,

that will be specified in the following chapter.

Afterwards, the results are presented and lastly

summarized.

4.1. Methodology

To evaluate the performance of this approach, we

wanted to test it on a self-trained model. For this

we defined the following testing scenario: We have

a VGG19, that was trained on our new data set

and want to inject random bit flips in a specific

layer.

4.1.1. VGG 19

The VGG19 architecture is one of the most promi-

nent versions of a convolutional network. The ar-

chitecture consists of 16 convolutional and 3 fully

connected layers and is characterized by the use

of small convolutional filters. Its deep stacking of

these layers and the smaller filters allows for the
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extraction of more complex features. Additionally,

VGG19 has a relatively simple and uniform archi-

tecture, making it easy to understand and modify.

For this reason, it is well accepted and often used

in the industrial sector. Due to its interpretability

and the simple architecture, we decided to use this

specific model for our test. Table 3 provides an

overview of the most relevant training parameters.

Table 3. This table provides an overview about the

most relevant training parameters.

Parameter Value

Convolutional Layers 16
Fully Connected Layers 3
Trainable Parameters 139,611,210
Training Data 70,000 images
Validation Data 10,000 images
Batch size 32
Epochs 15
Optimizer RMSProp
Learning rate 0.0001
Training duration* 95 min
Test Accuracy 96.06%

*: trained on a Geforce RTX 3090 Ti

4.1.2. Testing Procedure

In order to determine the most suitable software-

based fault injection tool for our testing purposes,

we evaluated the tools from Table 2. We found

that the ares framework was not suitable for our

use case, as it required significant changes to the

source code in order to integrate our own model.

We also encountered compatibility issues with In-

jectTF2. Ultimately, we decided to use TensorFI2

for our testing.

To conduct our fault injection tests, we stat-

ically induced a number of random bit flips in

the third layer of the fourth convolutional block

within the VGG19 network. This means, that a

values within this layer is randomly selected and

a bit in the memory of that value is flipped. We

then evaluated and compared the accuracy of the

resulting network using a set of 2,000 test images.

To assess the impact of bit flips on the network’s

accuracy, we gradually increased the number of

simultaneous bit flips from 1 up to 250 in incre-

ments of 10.

All of our tests were conducted on the same

hardware setup, which consisted of a Geforce

RTX 3090 Ti in combination with an AMD Ryzen

9 processor. By keeping the hardware consistent

across all tests, we ensure that any differences in

accuracy were solely due to the number of bit

flips injected and not influenced by variations in

hardware performance.

4.2. Results

4.2.1. Accuracy Assessment

When conducting our initial experiments, we ob-

served that the accuracy of our model varied

greatly when rerunning the tests, especially for

smaller numbers of bit flips. This can likely be

attributed to the random selection of the bits. Each

run generated a new set of randomly selected bits,

which may have had different levels of relevance

for the computation, leading to differing levels of

accuracy in the results.

Fig. 4. Cumulative accuracy over the course of 50
iterations for 30 bit flips.

To address this issue and make our results more

repeatable, we decided to rerun each experiment

multiple times for each number of bit flips, and

calculate the cumulative average over 50 itera-

tions. Over this amount of iterations, the accuracy

for the specific number of bit flips converged to

a certain value. Fig 4 shows the cumulative aver-
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aged accuracy over 50 iteration for the injection of

30 bit flips at once. We repeated these 50 iterations

for all numbers of bit flips and determined the

accuracy value that the experiment converged to.

The resulting plot illustrating the accuracy for

each number of bit flips can be seen in Fig 5.

Fig. 5. Overall accuracy for n bit flips

By taking the converging value as the final

result, we were able to mitigate any potential

fluctuations or biases introduced by the random

bit selection. This allowed us to obtain a more

accurate representation of the impact of bit flips

on our computation for each specific number of

bit flips tested. As shown in Fig 5, it is clear

that the overall accuracy of the network decreases

exponentially as the number of bit flips induced

increases. This trend is indicated by the red re-

gression line in the graph. By analyzing this trend,

we can gain important insights into the behavior

of the network under different levels of bit flips,

and use this information to optimize it for better

performance.We can, for example, identify the

critical threshold of bit flips beyond which the

accuracy drops significantly.

4.2.2. Time

In addition to measuring the accuracy of the net-

work’s prediction under different levels of bit

flips, we also recorded the time it took to inject

the bit flips for each experiment. As shown in Fig

6, the graph displays a gradual and linear increase

in time with the number of bit flips induced, with

Fig. 6. Total time for injecting n bit flips.

a little over 0.2 seconds for a single bit flip, up to

around 0.8 seconds for 250 bit flips. This shows,

that the static injection of faults into a neural

network hardly cause any additional overhead and

is quite efficient.

4.3. Summary

In summary, the study on our new data set has

demonstrated that software-based fault injection

is a fast and scalable method for inducing bit

flips in DNNs. We found that the accuracy of

our classifier exponentially declines as the number

of bit flips increases, which can have significant

implications for the reliability and robustness of

the system. To further evaluate the vulnerability of

the entire network, we recommend repeating the

experiments for all layers in order to identify the

most vulnerable one.

5. Conclusion

In this paper we introduced SynthiCAD, a new

data generation tool, as well as an open-source

data set for classification tasks. With minor modi-

fications, SynthiCAD also allows the creation of

additional data sets, which feature multiple in-

stances of different objects for object detection

and segmentation tasks as well as higher resolu-

tion images. We plan to publish an example image

data set for these computer vision tasks as well.

In addition, our tool is constantly undergoing op-

timization, and we are actively exploring various

post-processing methods to enhance the realism
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of the generated output. Furthermore, we con-

ducted a comprehensive analysis of existing fault

injection approaches, comparing several software-

based methods, including Ares, InjectTF(2), and

TensorFI(2). To test these methods, we used a

VGG19 network that had been trained on our

newly generated data. In order to demonstrate the

resilience analysis using the data set we imple-

mented TensorFI2 to induce varying numbers of

bit flips in a specific layer, and evaluated the ef-

fects on the network’s accuracy. We also measured

the time required for the fault injection. Such

experiments allow to identify the most critical

components and uncover areas for improvement,

making them essential for the resilience analysis

of DNNs.
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