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The future of mobility is set to be reformed as the rapidly increasing use of driver assistance systems and highly
automated vehicles (HAVs) show their great potential. The use of deep neural networks in autonomous driving
systems has led to significant progress in this area. However, the increase in accidents involving HAVs highlights
the need for effective testing and validation methods to increase the overall safety of these vehicles. With many
technology companies and manufacturers aiming to put Level 4 and 5 vehicles into operation soon, the safety of
HAVs remains a major concern. Rigorous testing and validation against potential failures and misbehaviour are
required to ensure the reliability and robustness of these systems. This paper provides an overview of state of the art
in testing and evaluation methods for machine learning-based HAVs. A literature review on these topics is provided
to give valuable insights to researchers, practitioners and policymakers. As such, the review describes different types
of validation, verification and testing methods, including real-world testing, simulation testing, hardware-in-the-
loop testing, adversarial robustness, and methods used for explainability and interpretability in AI. The advantages
and limitations are discussed and current challenges are highlighted. Finally, open research questions and future
directions in the field are identified.
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1. Introduction

Highly automated vehicles (HAVs) have become a

topic of great interest in recent years, and various

companies are making large investments in this

technology. These vehicles require a variety of

sensors and algorithms to perform their specific

tasks. However, the challenges we face with HAVs

are complex. These challenges include perceiving

the environment and dealing with partial, incom-

plete or erroneous information. It is crucial that

HAVs understand the environment to interact with

it safely. HAVs perceive the real environment with

the help of sensors by constructing a representa-

tion of it. For example, to navigate and interact

with an unstructured and changing environment,

obstacle detection or semantic classification can

be performed. Navigation is based on localisa-

tion, trajectory planning and the use of sensors

such as GPS, range sensors, ultrasonic sensors,

high-resolution RGB cameras (Tesla, 2021), depth

sensors, sonar, radar and 3D LiDAR (Waypoint,

2022). A combination of different sensor types

provides a more reliable picture of the environ-

ment, as each type has its own limitations (Yeong

et al., 2021). Sensor data can provide insufficient

information due to inherent limitations, system er-

rors, volatile changes in environmental conditions

(such as weather) and unpredictable behaviour of

other actors involved. HAVs require a high de-

gree of robustness in terms of their perception

system and trajectory planning. They cannot af-

ford severe failures in any real-world scenario, as

these kinds of failures can lead to injuries or even

death and damage to the environment. Their ap-

plication must meet higher requirements than hu-

man drivers, as social acceptance and trust in the

technology will not be given otherwise (Hutson,

2017). In addition to the use of various sensors in

the perception system, stable mapping procedures

and reliable trajectory planning are essential for

the safe operation of HAVs. In order to support

their development and deployment, a variety of

testing methods must be performed. These tests
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should take into account HAV functionalities, in-

cluding sensor usage, ML algorithms, and com-

plex decision-making processes. In this context,

researchers and industry have developed a variety

of testing methods, such as simulated test envi-

ronments, closed-loop testing or on-road testing.

Each of these approaches has its own advantages

and disadvantages, and their suitability depends

on the specific needs and objectives of the test

program. Along with these testing methods, other

evaluation methods are needed to increase the

robustness and explainability of the algorithms to

provide sufficient confidence in the application.

This paper provides a comprehensive overview

of the state of the art in testing and evaluation

methods for ML-based HAVs. It also identifies

open questions and future directions in the field

to guide further research.

2. Highly Automated Vehicles

HAVs are becoming increasingly common in

modern transportation, with potential to reduce

human error, improve driving practices and pre-

vent road accidents (European Automobile Man-

ufacturers Association, 2019). However, ensuring

the safety of these systems requires rigorous test-

ing and validation methods, the creation of and

compliance with standards and certification proce-

dures, and consideration of potential environmen-

tal impacts.

2.1. SAE Levels of Driving Automation™

The Society of Automotive Engineers (SAE) has

introduced a classification system for autonomous

vehicles (SAE International, 2021), ranging from

Level 0 to Level 5, based on the degree of au-

tomation. Level 0 represents no automation while

a human is in full control over the vehicle. Level 1

and Level 2 vehicles have some automated func-

tions, such as adaptive cruise control, lane depar-

ture warning, lane centering, or self-parking, but

require a human driver to be ready to take over at

any moment. Level 3 to Level 5 vehicles can drive

autonomously with minimal to full automation.

The higher the level, the more tasks the vehicle

must be able to execute under several conditions.

These tasks and conditions include driving on a

highway or in a designated area, or operating on

any road and under any conditions.

Fig. 1. SAE Levels of Driving Automation™. The
threshold between level 2 and level 3 separates them
into the categories “Human Driving” and “Automated
Driving” (SAE International, 2021).

Automated driving can be described as a pro-

cess of sensing the environment (sense), thinking

about the appropriate action (plan/think), and ex-

ecuting it through actuation (act).

2.2. Sense

Sensing is a key aspect of HAVs that relies on

sophisticated sensors and cameras to detect and

interpret the environment, including the identifi-

cation of other vehicles, pedestrians, road signs,

and traffic signals, as well as environmental con-

ditions. Computer vision is a critical task, as it al-

lows the vehicle to visually represent the environ-

ment. Perception involves using high-resolution

cameras (Tesla, 2021), LiDAR (Waypoint, 2022),

and other sensors to detect and classify objects

in the environment. Techniques such as Convolu-

tional Neural Networks (CNNs) for object detec-

tion and semantic segmentation (Girshick et al.,

2014; Ronneberger et al., 2015; Ren et al., 2015)

are commonly used for this purpose. Algorithms

such as You Only Look Once (YOLO) (Redmon

et al., 2016), Faster Region-based Convolutional

Neural Networks (R-CNN (Ren et al., 2015), and

Single Shot MultiBox Detector (SSD) (Liu et al.,

2016) are highly used to detect, analyse and iden-

tify objects. YOLO, for instance, is a real-time

object detection algorithm that performs detec-

tion and classification in a single pass through

the network. It has the advantage of being fast

and efficient, allowing it to be used in real-time
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applications. Nonetheless, earlier versions might

encounter difficulties in identifying small objects,

performing less accurately in this regard com-

pared to other methods (Yeong et al., 2021). Faster

R-CNN is a two-stage object detection algorithm

that uses a Region Proposal Network (RPN) to

generate potential object locations followed by a

classification network to detect and classify ob-

jects (Ren et al., 2015). It is slower and less effi-

cient than YOLO but has the benefit of being more

accurate and is also able to detect smaller objects.

SSD (Liu et al., 2016) is a one-stage object de-

tection algorithm that uses a single convolutional

network to detect and classify objects in a single

pass. It is comparably fast and efficient as YOLO

but has higher accuracy and is also able to detect

smaller objects. However, it may struggle with

accurately detecting objects at varying scales and

aspect ratios. LiDAR point cloud processing is an-

other critical feature for HAVs. These algorithms

detect objects and estimate their position and ori-

entation based on the data collected by the Li-

DAR sensors. Multi-sensor fusion can be used for

more accurate perception, combining information

from multiple sensors (Yeong et al., 2021). Algo-

rithms such as Kalman filter (Sasiadek and Har-

tana, 2000), Particle Filter (Jain et al., 2011), and

Conditional Random Fields (CRF) (Xiao et al.,

2015) are used for this purpose. Finally, HAVs

apply a combination of mapping and localisation,

subsequently using planning algorithms to navi-

gate.

2.3. Plan/ Think

Depending on the scene representation from the

previous steps, navigation inputs and traffic rules,

specific path restrictions are adopted and taken

into account for path planning. Since the position

is altered constantly while moving, the trajectory

is recalculated and adjusted accordingly. Several

trajectory planning algorithms can be used indi-

vidually or in combination, such as A* algorithm,

Rapidly-Exploring Random Trees (RRT) (Zhou

et al., 2021), Model Predictive Control (MPC) (Ji

et al., 2017), Dynamic-Window Approach (Fox

et al., 1951), and Probabilistic Roadmap (PRM).

These algorithms plan a collision-free and feasible

trajectory, optimising objectives such as minimis-

ing travel time or energy consumption while con-

sidering the vehicle’s dynamics and constraints.

Decision-making in HAVs is typically accom-

plished through a combination of software and

hardware components. The software component

involves the use of ML models that utilise input

data from sensors and other sources to calculate

accurate predictions, enabling the vehicle to make

informed decisions. The hardware component in-

cludes sensors, processors, and actuators that al-

low the vehicle to perceive its environment, pro-

cess information, and take physical actions such

as steering, accelerating, and braking.

2.4. Act

During the “act“ phase, appropriate actions are ex-

ecuted by various types of actuators to control the

movement of the vehicle based on the decisions

made in the “plan“ phase. HAVs are designed

to perform complex manoeuvres, including lane

changes and merging onto highways while ensur-

ing the safety of passengers and other road users.

Communication technologies such as Vehicle-to-

Vehicle (V2V) or Vehicle-to-Infrastructure (V2I)

can be established, enabling sharing information

like speed, direction, road conditions, or traffic

congestion. This exchange of information allows

for better-informed operations and enhances the

decision-making and finally acting capabilities of

HAVs.

3. Challenges

The accurate perception of HAVs, which includes

mapping, detection, and sensor technology, heav-

ily depends on environmental factors. Neverthe-

less, unpredictable changes, such as weather con-

ditions, incomplete or incorrect data, can impede

accurate perception (Zhang et al., 2023). The qual-

ity of the perceived data and the accuracy of

predictions made by ML algorithms highly im-

pact the safety of the HAVs (Kim et al., 2023).

Overfitting issues, the lack of transparency and

understanding regarding ML models, and occur-

ring model drifts while learning online must be

mitigated. Decision-making in real-time is a non-

trivial task, and even small flaws in this concept
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can lead to fatal accidents (Okumura, James, Kan-

zawa, Derry, Sakai, Nishi, and Prokhorov, Oku-

mura et al.). Further, the interaction with other

actors (e.g., pedestrians, cyclists, other vehicles)

and the environment, which both can show unpre-

dictable or unknown behaviours and conditions,

must function appropriately to enable HAVs to

respond correctly. Given the open-world charac-

teristics of HAV applications, it is not possible

to ensure complete test coverage of all systems.

Moreover, HAVs are vulnerable to cyber-attacks

(Petit and Shladover, 2014), which compromise

safety and security further. Besides the technical

considerations, societal implications must be ad-

dressed since HAVs are still a relatively new tech-

nology. Societal acceptance and trust-building are

critical, including concerns about ethics, fairness,

data privacy, liability questions and overall robust-

ness. This is why regulations, standards, and cer-

tification processes are needed and should be put

in place soon (Frischknecht-Gruber et al., 2022).

A new emerging problem will be the human-out-

of-the-loop once fully autonomous systems are

in place, even though human drivers are already

failing to act as a fallback in many cases (U.S.

Department of Transportation, 2022) (see Figure

2).

Fig. 2. Challenges of automated driving.

3.1. Safety Standards and Certification

Regulations, standards, and certification are vi-

tal to ensure the safety and acceptance of HAVs

and autonomous systems. However, current safety

standards, such as ISO 26262, only focus on func-

tional safety and do not cover operational safety

of automated driving functions comprehensively.

Hence, the standard ISO 21448 Road vehicles -

Safety of the intended functionality (SOTIF) was

introduced. Due to the infinite number of un-

known and unsafe scenarios that HAVs encounter

and the central role that AI components play in

their operation, new standards are currently be-

ing developed. ISO and IEC are collaborating on

standardisation in AI through their Joint Techni-

cal Committee (JTC 1) in subcommittee 42 (SC

42), which includes standards like ISO/IEC TR

24029-1 “Assessment of the Robustness of Neural

Network” and ISO/IEC CD TR 5469 “Functional

Safety and AI Systems”. IEEE SA is developing

standards for AI systems, covering transparency,

data privacy, algorithmic bias, and ethics. Their

Ethically Aligned Design (EAD) guides the de-

sign, production, and use of autonomous and intel-

ligent systems, including standards, certifications,

and regulations.

4. Testing

Testing is essential in developing HAVs as infi-

nite scenarios may occur on-road with the emer-

gence of unexpected cases. Accidents of leading

manufacturers such as Tesla (U.S. Department of

Transportation, 2022) emphasize the need to find

these edge cases beforehand. Testing in a specified

and/or controlled environment allows developers

to run or simulate various scenarios that help iden-

tify and fix potential problems early in develop-

ment. It is also worth mentioning the importance

of risk-based methods in selecting test scenarios

(Gelder et al., 2019) since they play a significant

role in optimising the testing process for HAVs.

All of this contributes significantly to fostering

trust in the technology.

4.1. Verification & Validation

Verification aims to answer the question, ”Are we

building the system right?” by checking whether

the system adheres to the intended design and

requirements. Verification activities typically in-

volve code inspection, unit, integration, and sys-

tem testing to detect system errors, defects, or

anomalies. The goal is to identify and address any

issues before moving on to validation. Validation

ensures that autonomous driving systems perform

as intended and meet safety standards through

testing and evaluation in various scenarios and

conditions on the completed real system.
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4.2. Simulation

Simulation testing is valuable for developing

HAVs, enabling scalability, shorter analysis times,

and reduced risks. Two notable open source simu-

lation platforms are CARLA (Dosovitskiy et al.,

2017) and AirSim (Shah et al., 2017). CARLA

is built on Unreal Engine and provides a robust

API, scalable client-server architecture and realis-

tic core physics. It offers a wide range of vehicles,

objects, weather conditions, and sensors, making

it suitable for comprehensive end-to-end testing.

CARLA integrates seamlessly with Robot Op-

erating Systems (ROS) and Autoware, providing

flexible APIs and advanced simulation control. It

is particularly well suited for testing perception,

mapping, localization, and vehicle control algo-

rithms, including traffic scenarios. AirSim, de-

veloped by Microsoft Research, is another open-

source simulation platform based on Unreal En-

gine. It specializes in high-fidelity robotics and ve-

hicle simulation and is suitable for both software-

in-the-loop (SIL) and hardware-in-the-loop (HIL)

simulations. Airsim offers flight and driving sim-

ulations and supports ROS. It provides numerous

APIs, and sensors, as well as realistic vehicle

dynamics and environments. These platforms en-

able testing of autonomous driving and perception

algorithms in various environments. Simulation

testing is preferred for dangerous driving scenar-

ios like collisions due to safety concerns, but limi-

tations remain. Realistic system dynamics require

dedicated SIL and HIL techniques, while high-

level algorithms need to be tested in appropriate

environments like common game engines.

4.3. Software-in-the-Loop Testing

SIL testing is an essential component of HAV

testing. SIL involves testing a system’s software

in a simulated environment, where the hardware

components, vehicle dynamics, and environment

are simulated in real-time. Also, SIL testing al-

lows for testing architectures, validating percep-

tion systems, and planning and decision-making

of HAVs. It provides an efficient and cost-effective

way to test and validate the software of HAVs

without the risks, limitations and disadvantages

associated with real-world testing.

4.4. Hardware-in-the-Loop Testing

When conducting HIL testing, physical hardware

components are integrated with simulated ones in

a closed-loop system. This method is particularly

useful in autonomous and HAVs, as it enables

researchers to evaluate how the vehicle’s hard-

ware components (such as sensors, actuators, and

electronic control units) interact with the software

algorithms that control them. HIL testing connects

hardware components to a simulation environ-

ment, generating signals that simulate real-world

conditions. The hardware components’ outputs

are fed back into the simulation environment to

generate additional input. This closed-loop system

allows for testing of the complete system under

realistic conditions, without the need for actual

physical testing on the road. Thus, this method is

particularly useful for testing safety-critical sys-

tems. Also, automated HIL testing enables the

efficient analysis of large amounts of data.

4.5. Closed-course Testing

In closed-course testing, vehicles are assessed in

a restricted setting, such as private test tracks, to

ensure controlled conditions. This approach al-

lows engineers to test the vehicle’s performance

in a safe and manageable environment without the

risk of endangering human lives or the environ-

ment. It can be used to analyse a range of HAVs

functions, such as perception, trajectory planning,

decision-making, and control. However, closed-

course testing shows limitations in terms of com-

plexity and realism of the testing environment. It

cannot cover the diversity of scenarios that might

be encountered in real-world driving conditions.

Moreover, some limitations regarding obstacles

and scenarios that can be tested, as well as restric-

tions on the level of complexity that can be intro-

duced to the testing environment, might be due to

cost constraints. Despite these limitations, closed-

course testing remains an important tool for eval-

uating autonomous vehicles’ basic functionality

and safety before testing on-road. Additionally,

closed-course testing can be used in conjunction

with other testing methods, such as simulation and

field testing, to provide a more comprehensive and

realistic evaluation of the vehicle’s performance.
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4.6. On-Road Testing

On-road testing, while suitable, is time and cost-

intensive and requires numerous safety precau-

tions. Companies such as Tesla and Waymo have

conducted millions of test kilometres by them-

selves or received from their customers showing

some issues (Victor et al., 2023; U.S. Department

of Transportation, 2022). However, it is worth

mentioning that these accidents are relatively rare

compared to the number of kilometres driven by

the systems (Waymo, 2021). So, although nu-

merous test kilometres have been accumulated, it

still cannot be ensured that all possible hazardous

edge cases have been discovered and mitigated

in advance. From on-road testing, a next step

could be digitalising the collected real-world data

to create a surrogate of the real world, allowing

for a simulation testing environment to repeat

scenarios and add or generate altered surrogate

datasets. Thus, test drives are the final link in

the validation chain to evaluate the system’s per-

formance in a real-world physical infrastructure

setting (Waymo, 2021).

4.7. Verification of AI Components

4.7.1. Adversarial Robustness

In the field of ML, the importance of adversarial

robustness has become increasingly apparent. Ad-

versarial attacks are a type of threat that can com-

promise the security and integrity of ML models,

particularly neural network-based classifiers, by

exploiting existing vulnerabilities. (Goodfellow

et al., 2015). Whereas adversarial testing is a pow-

erful technique to verify and validate the robust-

ness and resilience of HAVs that are based on ML

algorithms. This technique involves exposing the

system to unexpected and adversarial scenarios.

The goal is to identify potential vulnerabilities,

test the system’s response and develop mitiga-

tion strategies. It includes simulating scenarios

such as sudden obstacles appearing on the road,

cyber-attacks on the vehicle’s communication and

control systems (Petit and Shladover, 2014), un-

expected weather conditions or dedicated noise,

alterations to sensor inputs (Goodfellow et al.,

2015). Insights are gained into the system’s be-

haviour, and areas for required improvement are

identified. Adversarial testing provides a way to

address the uncountable scenarios that can occur

in the real world and edge cases that may not have

been anticipated during the design and develop-

ment phase.

4.7.2. Explainable and Interpretable AI

ML algorithms used in HAVs, often operate as

black boxes, meaning their decision-making pro-

cesses and outputs are difficult to interpret or ex-

plain. This lack of interpretability and explainabil-

ity can be problematic in understanding how and

why a system came up with a particular decision

or action. This must be addressed to decide on ac-

countability and liability issues and to build trust.

With a lack of understanding, improving models

and systems by identifying and addressing any bi-

ases, errors, or limitations correctly (Ribeiro et al.,

2016) is difficult. From a regulatory and legal

perspective, it becomes apparent that HAVs and

fully autonomous systems need to be transparent

and explainable to ensure reliability, safety, and

fairness. Understanding the decision-making pro-

cess is a crucial aspect of ML, and the use of in-

terpretable models such as decision trees has been

suggested as a potential solution to enhance in-

terpretability. Local Interpretable Model-Agnostic

Explanations (LIME) (Ribeiro et al., 2016), Shap-

ley Additive exPlanations (SHAP) (Lundberg and

Lee, 2017) or saliency maps (Simonyan et al.,

2017) have emerged as promising techniques for

explaining the output of these models.

4.7.3. Test-Case Generation Using AI
Approaches

There exists considerable research on the use of

ML algorithms to create suitable test cases. Es-

pecially, the creation of particularly critical, haz-

ardous test environments has to be taken into ac-

count. There are various possibilities for creating

edge cases. One possibility involves using gener-

ative models such as generative adversarial net-

work architectures (GANs) to synthetically create

further test scenarios from an existing data set of

critical cases. Further possibilities are offered by

variational autoencoders (VAEs), which can con-
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struct similar cases from the latent-space represen-

tation of existing data. Additional interesting ap-

proaches include KING, which generates safety-

critical driving scenarios via kinematics gradients

(Hanselmann et al., 2022), Anti-CARLA, which is

a framework that automatically generates adver-

sarial test cases or also from the field of game-

level generation (Ramakrishna et al., 2022), such

as the creation of Mario game levels in the la-

tent space of DC-GANs based on an evolutionary

strategy (Volz et al., 2018). Once generated, these

test scenarios can be used in a suitable simulation

environment to test corresponding agents. Other

possibilities in terms of generation include, for

example Loiacono et al. (2011); González-Duque

et al. (2022); Chen et al. (2021).

5. Discussion and Outlook

This review provides an overview of testing and

validation methods for robustness and reliability

in current HAVs and autonomous vehicles. Han-

dling the complex and open-world nature of HAVs

in real-world applications is a major challenge.

We highlight the importance of using simulation

environments to identify corner cases and conduct

thorough testing, reducing time and costs. Scal-

able simulation tests, such as those shown in Air-

Sim and CARLA, supplement real-world testing,

allowing the design of complex scenarios not fea-

sible in reality. We emphasize the need for diverse

testing methods, including SIL and HIL tests, to

create a complete picture. Moreover, we high-

light the critical role of ML algorithms as essen-

tial components within HAV systems, illustrating

potential issues that may arise while presenting

effective methods for mitigating such challenges.

The development and deployment of HAVs and

autonomous driving systems are expected to show

many benefits, including convenience, improved

traffic conditions, and overall safety improve-

ment. However, further research is needed to iden-

tify complex scenarios, develop appropriate tools

that allow for scenario creation, shorten testing

time, enhance algorithm interpretability, and im-

prove system robustness. Despite substantial in-

vestments and testing efforts, additional research

is required to address challenges and concerns.

Future work should explore more suitable algo-

rithms for creating test case scenarios, investigate

approaches for achieving full coverage test rates,

and delve into accelerated testing methods.
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