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For complex systems, a fault of one or several components does not necessarily lead to a failure of the system, but
if the failed components are not immediately replaced, they may conduct some other components to an idle state. In
this work, a data-driven model with a two-step decision approach is proposed to provide a comprehensive analysis of
the potential failures and their causes. In the first step, a Multi-Class Multi-Output (MCMO) classification technique
is used to diagnose potential failures based on sensor signals, and, in the second step, Failure Analysis (FA) is applied
to investigate the root causes of those failures. The proposed approach is applied to a multi-component Hydraulic
System (HS) case study, showing the resulting effectiveness in improving system reliability, reducing downtime, and
minimizing the impact of failures on system operations. The results show that MCMO classification is a promising
approach for multi-component system failure diagnosis that offers several advantages over conventional methods.
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1. Introduction

Industrial systems are complex and failure-prone

systems that require constant monitoring and

maintenance to prevent downtime and ensure

safety. Machine Learning (ML) and Failure Anal-

ysis (FA) are two powerful tools that can be

used to diagnose system failures and establish

the root cause of failures. On the one hand, ML

techniques can learn from historical data to di-

agnose the likelihood of future failures. For in-

stance, several automated techniques have been

proposed in the literature to solve fault diagnosis

issues in industrial assets (Xu and Saleh (2021)),

particularly hydraulic systems (HSs). Multivariate

statistics (Helwig et al. (2015)), conventional ma-

chine learning (ML) (Chawathe (2019); Lei et al.

(2019); Zhao et al. (2019); Peng et al. (2020);

2655



2656 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Wang et al. (2021)), deep learning models (Huang

et al. (2021); Kim and Jeong (2020)), and early

classification (Askari et al. (2022)) are among

the widely used methods. These techniques are

capable of dealing with various challenges in fault

diagnosis, such as the non-linear nature of sen-

sor signals, varied sampling rates, and coupling

interactions between components. On the other

hand, FA is a systematic approach to investigate

the root cause(s) of a failure or malfunction in a

system or component (Ahmed et al. (2021)). The

process of FA typically involves a combination

of data analysis, physical inspection, and testing

to identify and isolate the cause(s) of the fail-

ure. Fault tree analysis (FTA) is one of the most

common techniques within the broader field of

FA that can identify the root causes of failures

and help engineers develop effective mitigation

strategies as one of the reliability analysis tools.

Several studies propose different methods for FA

and maintenance planning of industrial systems:

for instance, Ferri et al. (2013) propose a method-

ology for maintenance planning based on system-

level prognostics and FA. Tuncay and Demirel

(2017) use FA to analyze failure behavior and

component contributions on a coal mine’s dragline

for maintenance planning and cost reduction. Patil

et al. (2018) present a case study showing how

their approach identifies events causing failures

during the warranty period in a computer numeri-

cal control (CNC) turning center. Li et al. (2021)

introduce a method to determine the likelihood

of uncertain events by combining expert opinions

with FTA for an HS case study. Waghen and

Ouali (2021) analyze faults in complex systems to

capture hierarchical causality between root causes

and faults using an actuator system dataset.

While FTA is a powerful tool for analyzing

the causes of system failures, it has limitations

when it comes to dynamic systems. In such cases,

statistical FA (Lee et al. (2020); Mo et al. (2020);

Ni and Yang (2021)) may be more appropriate, as

they can provide a more accurate picture of the

industrial system behavior contributing to failure.

The previously reported literature review shows

that existing works apply either ML or FA to

diagnose and analyze the system failures, based on

the dataset availability and system knowledge. In

particular, ML techniques are typically employed

for handling large and complex industrial datasets,

whereas FA is employed for analyzing the failure

behavior of individual components or systems.

Moreover, FA is typically based on expert knowl-

edge and requires a thorough understanding of

the system under consideration, while ML algo-

rithms can learn patterns and behaviors from large

datasets without prior knowledge of the system.

Different from the related literature, this work

aims at combining the use of ML with statistical

FA to define a tool able to analyze the behavior

of a complex system with minimum user inter-

vention. Indeed, we develop a hybrid model that

integrates both ML and statistical FA techniques:

in particular, the ML model is used to detect

the states of the hydraulic components and the

final state of the HS, whilst the statistical FA is

used to identify the root cause of the failure. A

Multi-Class Multi-Output (MCMO) classification

method is thus constructed to process the sensors

measurement data coming from the industrial HS

and forecast not only the potential faults of the

system components but also the overall state of

the system and simultaneously determine the root

cause of failure. MCMOmodel is suitable for han-

dling complex classification problems with multi-

ple labels. This model allows for the assignment

of multiple labels to a single data point, which can

be beneficial in cases where a data point belongs

to more than one output or has multiple classes.

The rest of this paper is organized as follows.

Section 2 presents the MCMO method to classify

fault types industrial systems, used as inputs for

the rule-based model for the purpose of FA. Sec-

tion 3 describes a case study where the MCMO

method is applied to the state of the components

of the HS, and results are discussed and com-

pared with baseline methods. Lastly, concluding

remarks and outlooks for future work are pre-

sented in Section 4.

2. Methodology

In this section a two-step procedure is presented

for the complex multi-component system to diag-

nose not only the failure of the system but also
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Fig. 1. Scheme of the failure diagnosis and analysis
method based on MCMO classification.

the fault of each component at the same time (see

Figure 1). The proposed hybrid model consisting

of the MCMO classification and the rule-based

system for FA is described in Algorithm 1.

2.1. Multi-Class Multi-Output
Classification

An MCMO classification problem involves fore-

casting multiple target variables, where each tar-

get variable has more than two possible classes.

MCMO classification models based, for in-

stance, on Logistic Regression (LR), K-Nearest

Neighbor (KNN), Support Vector Machines

(SVM), Decision Tree (DT), and Random Forest

(RF) – denoted as MLR, MKNN, MSVM, MDT,

and MRF, respectively – are an extension of tra-

ditional classification techniques that can handle

multiple output variables simultaneously. In con-

trast to the corresponding single-output models

LR, KNN, SVM, DT, and RF, the MCMO models

can predict multiple dependent variables that are

correlated with each other. In addition to labeling

each basic component to its corresponding class,

MCMO models can also label the entire state of

the system to a specific binary class (Stable and

Non-stable).

Let us consider a system with a cyclic opera-

tion, whose generic component working-cycle is

represented by a setX =
〈
X(1),X(2), . . . ,X(N)

〉

of N time-series, each being composed of T real-

valued measurements X(i) =
(
xi
1, x

i
2, . . . , x

i
T

)

(for each i = 1, 2, . . . , N ). Each time-

series is classified in accordance with M la-

bels defined in C = {c1, c2, . . . , cM}: Y =〈
Y (1), Y (2), . . . , Y (N)

〉
denotes the labels corre-

sponding to the time-series in X .
The goal of the MCMO classification is to

optimally classify the time-series set X to the

class labels Y , i.e., determining the pairing(
X(i), Y (i)

) ∈ R
T × C for each i = 1, 2, . . . , N .

The proposed MCMO-based method is de-

scribed in detail in steps 1-4 of Algorithm 1. The

inputs to the algorithm are a set of timeseries X
and its corresponding multi-labels Y . The algo-
rithm splits the dataset into training and testing

sets and fits an MCMO classification model using

the training set. It then uses the trained model to

predict the labels Ypred for the testing set.

Note that the reproducibility of the MCMO

classification method depends on several factors,

including the availability and quality of training

data, the chosen model, and the specific imple-

mentation. To ensure reproducibility, it is im-

portant to have a well-defined and representative

training dataset that accurately represents the vari-

ability and complexity of the problem at hand. It

should include samples from all classes of each

target variable to provide sufficient information

for the MCMO model to learn.

2.2. Rule-based Model for Failure
Analysis

A rule-based model is a systematic approach used

to analyze the possible causes of failure in a sys-

tem. The procedure starts by defining all possible

failure modes Mj that could occur in the system,

having identified all the potential issues that could

arise and lead to the failure of the system by

taking a type of fault in the components. Sub-

sequently, the failure probability (FP) for each

of the identified failure mode Mj is computed.

The probability of a given failure mode Mj is

P (Mj) = NMj/N , which corresponds to the
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Algorithm 1 Failure Diagnosis and Analysis

based on Multi-Class Multi-Output classification

Inputs: X , Y
Outputs: FA results
1: Split the dataset X , Y in train data Xtra, Ytra

and test data Xtest, Ytest

2: Build the MCMO model using the train data

Xtra, Ytra

3: Determine the classes Ypred associated with

the test data Xtest

4: Compute the accuracy and precision of the

MCMO model comparing Ytest and Ypred

5: Define all failure modesMj from Ypred

6: Compute the failure probability ofMj

7: Find the steady-state and transient-state of the

system

8: Perform the statistical FA

ratio between the number NMj
of observations

and the total number N of failures in the dataset.

The results of the statistical FA are used for the

development of a risk management plan, with

the final aim of minimizing the risk of failure

and ensuring a safe and efficient operation. The

statistical FA procedure is described in steps 5-

8 of Algorithm 1. The algorithm calculates all

possible failure modeMj by taking the Cartesian

product of the predicted labels in Ypred and then

proceeds to find the steady-state and transient state

of the system, which may provide insights into the

underlying causes of failure.

Note that the reliability of the mentioned ap-

proach for failure analysis depends on various

factors, including the quality of data, the expertise

of analysts, and the complexity of the system

being analyzed. It also relies on a comprehen-

sive database that covers a wide range of failure

modes, with sufficient quantities to capture prob-

abilities and system behavior. A more robust and

comprehensive database leads to more informed

and effective decision-making in the context of

maintenance policies.

3. Case Study

This section applies the proposed methodology

to a realistic complex HS using data from an

Fig. 2. Scheme of the case study HS: (a) primary
working circuit and (b) secondary cooling-filtration cir-
cuit (adapted from Huang et al. (2021)).

experimental study on predictive maintenance that

is available in (Dua and Graff (2017)).

3.1. Setup of Experiments

The HS under consideration consists of primary

working and secondary cooling-filtration circuits

connected via an oil tank as shown in Figure 2.

The primary circuit contains a main pump, switch-

able accumulators, a filter, and valves, while the

secondary circuit comprises a hydraulic pump,

a solenoid valve, a filter, a cooler, and various

sensors. The state of four main components, i.e.,

the cooler C1, a two-way valve V10, the main

pump MP1, and the accumulators A1-A4, varies

dynamically, and different types of faults may oc-

cur. The monitoring system records process values

for sixty seconds on the four components using

data collected from 2205 working cycles under

different conditions. These data are recorded in

the predictive maintenance data set of the HS (Dua

and Graff (2017)).

Using the sensors signals listed in Table 1

as input, the MCMO model is able to simulta-

neously diagnose the multi-outputs of hydraulic

components and the overall state of the HS de-

scribed in Table 2, making it a powerful tool for

decision-making problem. In Figure 3, the state

of the four hydraulic components and the overall

state of the HS during the 2205 working cycles

have been graphically represented, providing a

comprehensive visual overview of the system’s
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Table 1. Description of sensors deployed in the case

study HS.

Identifier Measured quantity Unit Frequency

PS1-6 Pressure Pa 100 Hz
EP1 Motor Power W 100 Hz
FS1-2 Flow Rate Lit/min 10 Hz
TS1-4 Temperature ◦C 1 Hz
VS1 Vibration mm/s 1 Hz
CE Cooling Efficiency % 1 Hz
CP Cooling Power kW 1 Hz
SE System Efficiency Factor % 1 Hz

Table 2. Description of fault types for each

component and overall state of the HS.

Component Value Fault Severity Samples

Cooler 3% C1 732
(C1) 20% C2 732

100% C3 741

Valve 73% V1 360
(V10) 80% V2 360

90% V3 360
100% V4 1125

Pump 0 P3 1221
(MP1) 1 P2 492

2 P1 492

Accumulators 90 bar A1 808
(A1-A4) 100 bar A2 399

115 bar A3 399
130 bar A4 599

HS stable flag 0 SF2 1449
(SF) 1 SF1 756

Note: (C1): total failure; (C2): reduced efficiency;

(C3): full efficiency; (V1): total failure; (V2): severe

lag; (V3): small lag; (V4): optimal behavior; (P1):

severe leakage; (P2): weak leakage; (P3): no leakage;

(A1): total failure; (A2): severely reduced pressure;

(A3): slightly reduced pressure; (A4): optimal pres-

sure; (SF2): stable conditions; (SF1): unstable con-

ditions.

performance. For simplicity and dimensionality

reduction, we used the average of time series X
instead of processing the individual data points

which can be useful in very specific situations.

In this case, averaging the time series can help

smooth out any noise or fluctuations in the data,

making it easier to visualize trends or find pat-

terns using ML algorithms. Then, to compare the

performance of different classifiers, the dataset

has been splitted into a training set (80%) to

train the MCMO model and a testing set (20%)

to evaluate the performance of the model. This

split ratio is a commonly used ratio, although it

may vary depending on the size of the dataset

and the complexity of the problem being solved.

For the sake of comparing the results achieved

by the MCMO methods with those obtained by

the baselines, accuracy, and precision are used to

evaluate the performance of the models.

3.2. Results Analysis and Discussion

The results of the implementation of the proposed

approaches for failure diagnosis in the HS can be

evaluated in terms of accuracy and efficiency. The

accuracy of the fault detection depends on the per-

formance of the ML algorithm used for classifica-

tion. Table 3 shows that the MCMOmethods have

better accuracy in comparison with corresponding

traditional methods. Among them, the use of an

ensemble of decision trees in a Multi-Class Multi-

Output Random Forest (MRF) can capture the

non-linear and complex relationships between the

input features and the output labels of the HS. This

leads to better diagnosis performance compared

to models that use linear or simpler non-linear

models where the accuracy and precision for the

cooler, valve, pump, accumulator, and HS are re-

spectively, 100, 97.50, 99.77, 97.73, and 98.90.

The MCMO model involves multiple target vari-

ables, which can lead to high-dimensional feature

spaces. Therefore, understanding the relationships

between input features and multiple output vari-

ables is more complex and challenging compared

to traditional single-output classification models.

To evaluate the reliability of the complex HS,

an FA is required to examine all possible FM in

which the system may fail. However, in this case,

the scope of the analysis is limited to the four main

components, namely the cooler, valve, pump, and

accumulator. Various hydraulic components and

environmental effects may have an impact on the

overall condition of the HS even though they were

not taken into account in this analysis. Thus, the

inspection and evaluation of the system reliability
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Table 3. Accuracy of component and system level through MCMO classification model.

Model Cooler Valve Pump Accumulator HS

Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision
LR 99.77 99.77 71.65 77.30 98.86 98.89 61.22 58.86 92.97 84.48
KNN 99.83 99.83 84.12 84.46 97.95 98.03 94.55 94.60 92.06 87.17
SVC 99.83 99.83 48.75 36.54 95.01 95.80 57.14 65.68 92.97 84.48
DT 99.83 99.83 94.10 94.09 58.27 43.71 95.23 95.24 91.60 88.00
RF 99.83 99.83 96.37 96.37 58.27 58.27 97.73 97.73 91.83 86.62
MLR 100 100 50.79 81.79 75.96 78.58 41.95 59.38 87.30 87.27
MKNN 100 100 73.69 74.55 98.18 98.24 87.07 87.18 95.01 95.06
MSVM 53.51 55.46 46.48 25.00 54.42 33.33 36.50 25.00 68.70 50.0
MDT 100 100 94.10 94.14 99.77 99.77 95.23 95.29 97.27 97.27
MRF 100 100 97.50 97.59 99.77 99.77 97.73 99.73 98.86 98.90

Fig. 3. Degradation of hydraulic components and
stable state of hydraulic system.

are focused solely on these main components,

while external factors and other components are

excluded. To this aim, all possible combinations

of FM are defined for the HS by taking only the

four main components into consideration. These

FM are then assigned to probabilities based on

their likelihood of occurring. By calculating the

probability of each FM, the most critical points of

failure within the HS are identified, while facilitat-

ing the development of strategies to mitigate the

corresponding risks. The results of this analysis

can be seen in Table 4, which provides a clear pic-

ture of the system reliability and identifies areas

that require improvement.

Table 4 shows that it is not uncommon for the

HS to fail even when individual components such

as coolers, valves, pumps, and accumulators are

in optimal conditions (e.g., C3V4P3A4). This is

due to two main reasons. First, some issues on the

overall system design or configuration could oc-

cur, such as incorrect sizing or installation of com-

ponents, or inadequate maintenance and monitor-

ing of the system. Second, environmental effects

or interactions and dependencies between compo-

nents are not captured by the individual sensor

measurements used for diagnosis. As a conse-

quence, it is evident that the dataset related to

the case study HS does not embed all failure sys-

tem information. Alternatively, a thorough analy-

sis of the system’s design and operation may be

conducted to identify any redundancies, backup

systems, or alternative pathways that may allow

the system to continue functioning despite compo-

nent failures. To this aim, Tables 5 and 6 respec-

tively present the steady-state and transient-state

conditions of the HS, highlighting the stable and

consistent operation of the system under normal

conditions [AB], [CD], and [EF] (see Figure 3),

as well as its response to changes (transient-state

[BC], [DE], and [FG]). Regardless of the cooler

state (i.e., it is failed or at full efficiency), the sys-

tem exhibits the same behavior pattern for [BC],

[DE], and [FG] (see Figure 3), thus indicating that

the cooler is not a critical component. Comparing

Table 4 with Tables 5 and 6, the dynamic nature

of the HS’s failure behavior is clearly evident, as

opposed to being primarily static. Table 5 shows
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Table 4. Failure probability (FP) for all failure modes (FM) of the HS.

FM FP(%) FM FP(%) FM FP(%) FM FP(%)

C1V4P1A1 0.13 C1V4P1A2 0.13 C1V4P1A3 0.13 C1V4P1A4 0.13

C2V4P1A1 0.13 C2V4P1A2 0.13 C2V4P1A3 0.13 C2V4P1A4 0.13

C3V4P1A1 0.13 C3V4P1A2 0.13 C3V4P1A3 0.13 C3V4P1A4 0.13

C1V4P2A1 0.13 C1V4P2A2 0.13 C1V4P2A3 0.13 C1V4P2A4 0.13

C2V4P2A1 0.13 C2V4P2A2 0.13 C2V4P2A3 0.13 C2V4P2A4 0.13

C3V4P2A1 0.13 C3V4P2A2 0.13 C3V4P2A3 0.13 C3V4P2A4 0.13

C1V4P3A1 1.45 C1V4P3A2 1.45 C1V4P3A3 1.45 C1V4P3A4 27.91

C2V4P3A1 27.91 C2V4P3A2 1.45 C2V4P3A3 1.45 C2V4P3A4 1.45

C3V4P3A1 27.91 C3V4P3A2 1.45 C3V4P3A3 1.45 C3V4P3A4 1.45

Note: If valve V4 is substituted with either V1, V2, or V3 in all FMs, then the resulting FP will be equal to zero.

Table 5. HS Steady State.

Steady-state Cooler Valve Pump Accumulator HS

[AB] F H H H SF1

[CD] Ci=2 H H F SF1

[EF] H H H F SF1

Note: F: failure; H: non-failure or healthy

Table 6. HS Transient State.

Transient Cooler Valve Pump Accumulator HS
State

[BC] Ci=1..3 Vi=1..4 F Ai=1..4 SF2
Pi=1

[DE] Ci=1..3 V4 → V1 Pi=2..3 Ai=1..4 SF1

[FG] Ci=1..3 H H Ai → Ai−1 SF1

Note: F: failure; H; non-failure or healthy

the critical component that leads to system failure,

whereas Table 6 reveals that HS is failed with a

sequence or a combination of events. A basic fault

tree can model HS failure mode in the first case

but not in the second one. Therefore, additional

modeling techniques are needed to capture the

system’s behavior. Among them, dynamic fault

trees and, stochastic Petri net which is an exten-

sion of basic fault trees, and also Markov models

are potential probabilistic tools that can be used

for this purpose.

4. Conclusion

This paper addresses the failure analysis of indus-

trial systems by diagnosing failure modes with the

aid of the proposed approach. In the first step, a

Multi-Class Multi-Output (MCMO) classification

was applied for forecasting the state of multiple

components in a hydraulic system (HS) and the

corresponding overall state. This approach differs

from conventional classification, which typically

involves using one model for each component.

The results demonstrate that MCMO outperforms

traditional approaches in terms of accuracy and

precision. One of the key advantages of using

MCMO is that it allows for the simultaneous di-

agnosis of the state of all components in parallel

using a single machine learning (ML) model. This

not only saves time and computational resources

but also ensures consistency across all predictions.

Additionally, the MCMO is also able to diag-

nose the final state of the HS, which is useful

for applications where the overall state of the HS

is more important than the individual component

states. In the second step, combinations of events

leading to system failure mode were identified.

This diagnosis step is the basis of the industrial

failure analysis. This latter shows that the HS

failure mode could not be explained completely

only considering independent components as in

the construction of a common fault tree. For this

reason, future works will emphasize other ways

to conduct the failure analysis. One perspective

would be to conduct this analysis with a proba-

bilistic modeling approach accounting for depen-

dencies such as dynamic fault trees or stochastic

Petri nets. A second perspective would be to learn

the combinations of events involving dependen-

cies at the ML stage of the approach.
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