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Time series anomaly detection (TSAD) is vital across industries, helping identify abnormal patterns to prevent issues,
reduce costs, and improve system performance. Nowadays, AI has emerged as a promising solution to enhance
TSAD. However, it lacks the self-adapting ability and knowledge of choosing the best-suited model under different
contexts. To overcome these challenges, we have integrated various algorithms using a unified data interface and an
automated training-testing process. We have incorporated automated hyperparameter optimization and architecture
selection. Additionally, we conducted further experiments that demonstrated the advantages of a smart switch
mechanism for selecting the most appropriate TSAD method based on statistical features of the data, resulting
in improved detection performance. This dynamic switch mechanism has been integrated into our TSAD platform.

Keywords: Fault Detection, Anomaly Detection, Machine Learning, Deep Learning.

1. Introduction

The drive for greater efficiency through automa-

tion is a major factor in today’s technological

advancement, with cyber-physical systems (CPS)

playing a crucial role. As these systems become

increasingly complex, such as industrial control

systems and connected vehicles, manual intercep-

tion of faults and attacks becomes impractical. As

a result, automated anomaly detection is essential

to ensure CPS security and safety. Monitoring

CPS status is usually achieved through multivari-

ate time series, with each channel representing a

separate sensor or communication channel.

An abundance of scientific papers is available

presenting new or upgraded methods while claim-

ing to outperform other state-of-the-art methods.

The existing research usually takes one or two

datasets as the target and then describes the newly

invented algorithm. They usually give a list of

hyperparameters, which is usually manually de-

cided. Finally, they compare with several older

methods over the selected dataset and claim su-

periority. In short, one dataset along with the pro-

posed algorithm at a time. These ”one-at-a-time”

workflows are commonly followed by the research

community.

However, this workflow has certain drawbacks.

First, it is difficult to quickly compare multiple

models, and conclusions could potentially be lim-

ited to the selected dataset. The lack of generaliza-

tion and robustness is usually omitted or weakly

mentioned. To have an overview of the different

efficiency among different algorithms facing dif-

ferent datasets, a better way is to construct every-

thing in an automated manner. Second, even for

one certain method, it is also difficult to under-

stand what aspects influence the detection perfor-

mance to what extent. Therefore it is very hard to

keep track of the actual progress in this field.

Contributions: First, for the purpose of over-

coming the previously mentioned challenges, we

integrate different algorithms together with a uni-

fied data interface, automated configuration, and
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training-testing process. Second, we have done

additional experiments to prove a better mecha-

nism than relying on a single TSAD method. A

smart switch mechanism capable of selecting a

method based on statistical features of the data

can lead to better detection performance. Third,

our tool and corresponding experiments are open-

source for the research community.a

As illustrated in Fig.1, we build an anomaly de-

tection platform that consists of different steps and

corresponding components. All of these have dif-

ferent kinds of possibilities. As a result, users can

choose different combinations of models, thresh-

olding functions, and evaluation metrics.

Fig. 1.: Automated anomaly detection with mod-

ularized design, Preproccessing module (blue) is

described in Sec. 2, Modeling module (purple) is

described in Sec. 3, Postprocessing module (yel-

low) is described in Sec. 4, Self-adapting module

(green) is described in Sec. 5

2. Preprocessing module

2.1. Data set

The input of the platform is defined by a data

interface. It enables the import of any time se-

ries dataset stored in CSV files, where values

awww.github.com/mbsa-tud/tsad_platform

are separated by commas and the dot is used as

the decimal separator. Several time series datasets

from different CPSs were collected. The origins

and attributes of these five datasets are briefly

presented in the following.

NASA Soil Moisture Active Passive satellite
(SMAP) This expert-labelled real-world dataset

was collected from ”Incident Surprise, Anomaly”

(ISA) reports from NASA’s Soil Moisture Active

Passive satellite Hundman et al. (2018). It consists

of 55 different physical entities of equal type and

dimensionality. Each entity contains 25 channels

with only one channel being a sensor value while

all other channels represent commands received

by that entity.

NASA Mars Science Laboratory (MSL) Sim-

ilar to the SMAP dataset, this real-world dataset

was expert-labelled using ISA reports for NASA’s

Mars Science Laboratory, the Curiosity rover

Hundman et al. (2018). It also consists of multiple

entities (27) with multiple channels each (55).

As for the SMAP dataset, only the single sensor

channel is considered in this work containing the

same types of anomalies.

Unmanned Aerial Vehicle (UAV) This uni-

variate dataset was synthetically generated using

a Simulink model. Of the two available entities,

the accelerometer and the gyroscope, only the

gyroscope dataset was used for evaluations in this

work. The dataset was injected with three types of

anomalies: Offset, noise and stuck-at faults.

Automated Vehicle System (AVS) Similar to

the UAV dataset, it was generated with fault in-

jection experiments using Simulink models. In

contrast to the UAV dataset, the anomalies in each

time series are separated by a fixed interval.

Server Machine Dataset (SMD) The Server

Machine Dataset Su et al. (2019) is a multivariate

dataset. It was collected over five weeks and con-

tains 28 different entities of three groups. Each of

the entities consists of 38 individual channels.

2.2. Data spliting

Figure 2 shows the methods of splitting the

dataset. The fault-free data gets split into a train

set ZFF and a training validation set VFF . The

anomalous test set gets split into 90% test set
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TA and 10% anomalous validation set VA. Since

an anomalous validation set might however not

always be available and many datasets just contain

a single anomaly in their test data, the splitting

of the test set into TA and VA is only done for

datasets with multiple files for testing, such that at

least one of the files is used for VA. Otherwise, the

entire test set is used as VA.

Fig. 2.: Data preparation for the TSAD platform.

After splitting a dataset into the aforementioned

subsets, the data is further prepared for the TSAD

methods by splitting it into overlapping subse-

quences/windows of equal length w separated by

a fixed step-size.

2.3. Feature extraction

In TSAD, feature generation, selection, and ex-

traction are essential components of the overall

process. Feature generation involves creating new

features based on the available data. A variety

of techniques can be employed, including statis-

tical measures such as mean and skewness. These

features are used to capture the distribution and

central tendency of the data. Feature selection is

performed to identify the most relevant features.

This is typically done to reduce the dimensionality

of the feature space and improve computational

efficiency. Feature extraction is used to transform

the selected features into a more compact and

representative feature space.

2.4. Normalization

Normalization is a critical step in preparing time

series data for anomaly detection. The process

involves scaling the data to ensure that all fea-

tures have the same weight during analysis. There

are various techniques for normalizing time se-

ries data, including min-max normalization, Z-

score normalization, and robust scaling. Different

normalization methods may perform better un-

der different conditions, and the selection of the

appropriate method can significantly impact the

accuracy of the anomaly detection model.

3. Modeling module

3.1. Integrating different TSAD methods

After literature research on different TSAD meth-

ods, we find out that there are different ways of

categorizing them. First, they can be grouped into

statistical, machine learning, and deep learning

methods. Second, they can be grouped into semi-

supervised, unsupervised, and supervised meth-

ods. Third, depending on the principle of how they

detect anomalies, they can be grouped into meth-

ods such as predictive, reconstructive, distance-

based, and isolation tree-based methods. As users

are usually more familiar with the first categoriza-

tion, we provide the user interface with the first

categorization, as shown in Fig.3. However, for

the purpose of integrating different TSAD meth-

ods, the second one is more essential to differenti-

ate their training and testing procedure.

3.1.1. Semi-supervised methods

Semi-supervised methods are trained only on nor-

mal data without anomalies. Representative meth-

ods in this regard are Predictive methods and

Reconstructive methods, most of these methods

exploit deep learning neural networks. Predic-
tive methods compute the anomaly scores θ by

predicting the k next values following a given

subsequence. Afterwards the predicted points are

compared to the observed points. Such methods

include convolutional neural networks (CNN) like

the DeepAnT Munir et al. (2018) architecture, or

long-short term memory (LSTM) networks Hund-

man et al. (2018). In Braei and Wagner (2020), a

multilayer perceptron (MLP) and a residual net-

work (ResNet) are also used to make predictions.

Reconstruction methods on the other hand en-

code the subsequences into a latent space rep-

resentation and try to reconstruct it from there.

The difference between the reconstructed and ob-

served points in the subsequence results in the

anomaly score θ. Examples are autoencoders like

fully connected layers used in Sakurada and Yairi
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(2014) or the temporal convolutional autoencoder

(TCN-AE) Park et al. (2022).

3.1.2. Unsupervised methods

Unsupervised methods don’t require prior training

on anomalous data. Instead, they operate under

the assumption that anomalous points or subse-

quences can be distinctly separated from the rest

of the data. Distance methods, as an example,

work under the assumption of anomalous points

or subsequences being further away from normal

ones. Examples are the local outlier factor (LOF)

Breunig et al. (2000), the local distance-based

outlier factor (LDOF) Zhang et al. (2009), angle

based outlier detection (ABOD) Kriegel et al.

(2008).

3.1.3. Supervised methods

Supervised approaches use labeled data during

training containing normal points and anomalies

and learn to classify points as normal or anoma-

lous. We have integrated several DL-based clas-

sification methods. However, due to their reliance

on the availability of massive labeled data, these

methods may not be truly effective.

3.2. User Interface

3.2.1. Training and detection

The main training panel of the TSAD platform

can be seen in Fig. 3. DNN, classic ML and

statistical models can be added to separate lists.

This can be done either by adding a default con-

figuration, which is stored in a JSON file, or by

manually adjusting the different hyperparameters

within the corresponding configuration panels.

Users can add as many models to these lists as

needed and even include the same model multiple

times with different configurations. At the bottom

of these lists, the training and optimization buttons

are located. It’s possible to train either all models

or a selection of models from the list consecu-

tively. For DNNs, the training can also be done

in parallel.

3.2.2. Model recommendation

Once the models have been trained, they appear

in the list of trained models on the left-hand side

of the detection panel, as shown in Fig.4. Users

can either run the detection process on a selection

of the trained models or for all models consecu-

tively. Afterwards, the list of trained models gets

sorted to show the best-performing model on top.

This ranking is done by comparing the model’s

F1 scores for the selected static threshold. Ad-

ditionally, another metric can be chosen to rank

the models by. Next to the model ranking, the

results for the selected threshold are depicted and

the parameters for the dynamic threshold can be

reconfigured.

Fig. 3.: Training panel of the platform.

Fig. 4.: Detection panel of the platform.



3060 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

4. Postprocessing module

After getting the output of the modeling mod-

ule, the platform computes anomaly scores using

different anomaly functions, including static and

dynamic gaussian scoring methods. The goal is to

reduce noise which is a potential cause of false

alarms. Then the anomaly score is passed to the

thresholding function to get the binary detection.

4.1. Thresholds

Various static thresholds and a non-parametric

dynamic threshold are available to transform

anomaly scores into binary labels.

4.1.1. Best F score threshold

Best F score thresholds are calculated on anoma-

lous validation set. If this set is not available,

they are calculated during testing after running the

detection.

4.1.2. Top-k threshold

The newly added static top-k threshold also sets

a threshold value with the support of a labeled

anomalous validation set VA, similar to the afore-

mentioned best F1 score thresholds. The differ-

ence however is, the top-k threshold gets set as

such, that exactly k points of VA are labeled as

anomalous, k being the number of anomalous

observations in VA.

4.1.3. Dynamic threshold

The non-parametric dynamic thresholding method

was adapted from Hundman et al. (2018) and

uses a windowing approach. The prediction/re-

construction errors are smoothed using the expo-

nentially weighted moving average (EWMA) be-

fore assigning each window a separate threshold

from a predefined range.

4.2. Evaluation metrics

Various evaluation metrics can be used to judge

the detection performance of a TSAD method.

Table 1 shows all available evaluation metrics

that can be calculated by the platform. In addi-

tion to the point-wise (weighted) and event-wise

(unweighted) metrics, six new metrics were in-

troduced: Point-adjusted metrics, as proposed by

Xu et al. (2018), and composite Fβ scores, which

were initially introduced by Garg et al. Garg et al.

(2021). The value of all metrics can reach from 0

to 1, 0 being the worst possible score and 1 the

best.

Metric Point-wise Event-wise Point-adjusted Composite
Precision Pr Pre Prp -

Recall Rec Rece Recp -

F1 score F1 Fe1 Fp1 Fc1

F0.5 score F0.5 Fe0.5 Fp0.5 Fc0.5

Table 1.: Available evaluation metrics.

4.2.1. Point-wise metrics

Point-wise metrics compare a model’s detected

labels to the ground truth labels for each individ-

ual observation in the time series. This is done

by initially calculating the number of true posi-

tive (TP ), false positive (FP ) and false negative

(FN ) points. Afterwards, common point-wise

metrics, including precision (Pr), recall (Rec)

and the Fβ score, are computed:

Pr =
TP

TP + FP
(1)

Rec =
TP

TP + FN
(2)

Fβ = (1 + β2)
Pr ·Rec

(β2 · Pr) +Rec
(3)

Only the F1 score, which is the harmonic mean

of precision and recall, and the F0.5 score, which

assigns a higher weight to the precision, are com-

puted by the platform.

4.2.2. Event-wise metrics

The main difference between event-wise and

point-wise metrics is, event-wise metrics just con-

sider true and falsely detected events. An event is

a continuous sequence of anomalous points. If a

detected sequence overlaps with a true anomalous

sequence in any way, that sequence is counted

as a true positive TPe. If it doesn’t overlap with

any true sequence, it is counted as a false positive

FPe, and if for a true sequence no overlapping

detected sequence is found, a false negative FNe

is recorded. Using these values, the precision Pre,
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recall Rece, Fe1 score and Fe0.5 score are com-

puted similar to the point-wise metrics.

4.2.3. Point-adjusted metrics

For the point-adjusted metrics, if a single true

positive is found within an anomalous segment, all

detected points in this segment are set to 1. After-

wards, the precision Prp, recall Recp, Fp1 score

and Fp0.5 score are calculated in the same way

as for the point-wise scores. These metrics can

therefore be interpreted as version of the point-

wise metrics which assign a single true positive

in an anomalous segment a way higher value.

4.2.4. Composite metrics

The new composite Fβ score is similar to the

common Fβ score with one major difference. It

combines the point-wise precision Pr and event-

wise recall Rece as follows:

Fcβ = (1 + β2)
Pr ·Rece

(β2 · Pr) +Rece
(4)

This platform offers both the Fc1 score, which

is the harmonic mean of Pr and Rece, and the

Fc0.5 score, which assigns Pr a higher weight

than Rece.

5. Self adapting module

5.1. Automated recommendation

In current research on TSAD, typically one or two

datasets are selected as the focus, a new algorithm

is introduced with manual configuration, and then

the algorithm is compared to several older meth-

ods with the claim of superiority. These conclu-

sions may be restricted to the specific dataset and

hyper-parameter configuration used, with limited

emphasis placed on generalization and robustness.

To obtain a comprehensive overview of algorith-

mic efficiency across diverse datasets (context), a

more effective approach is to construct a fully au-

tomated system that includes training and hyper-

parameter optimization, as well as automated de-

tection and evaluation. With such a system, state-

of-the-art methods can be automatically compared

over user-selected datasets to recommend the op-

timal solution.

5.1.1. Automated hyperparameter optimization

It’s important to optimize the entire training and

detection process by finding a set of hyperparam-

eters that results in the best score. Common ap-

proaches like grid search or random search choose

several combinations of hyperparameters from a

predefined grid or range of possible values. These

methods might however take a very long time

to find optimal hyperparameters as they evaluate

many different combinations in a brute-force way.

The default optimization algorithm for this plat-

form is bayesian optimization. It aims to solve the

following problem: max(f(x)), x ∈ A, f(x) is

referred to as the objective function, for which the

maximum value should be found. In the TSAD

platform, the objective function encapsulates the

entire process of training and testing a model.

It receives a combination of hyperparameters as

input and outputs the computed metric for the test

set. The algorithm operates as follows:

(1) f(x) is evaluated for a random selection of

values x0.

(2) A Bayesian statistical model providing a

posterior probability distribution, which de-

scribes potential values for f(x) at point x,

is updated.

(3) An acquisition function selects a new point x

to be evaluated next. It chooses the next point

for which it expects to improve f(x) the most

when compared to the current best point xbest.

(4) Step 1 and 2 are repeated N times and the best

point xbest is returned.

With the help of the optimization popup win-

dow provided by the platform, it is possible to

define the range of hyperparameters, choose the

metric to optimize the model for, and set the num-

ber of iterations N for the bayesian optimization.

5.1.2. Automated detection and evaluation

The platform’s auto-run panel offers configuration

options to train and test a selection of models on

an entire dataset. The workflow for configuring

and running the automated evaluations can be

summarized as such:

(1) A dataset folder has to be selected.
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(2) A preprocessing method has to be chosen

from the drop-down menu.

(3) A selection of models has to be made. They

can either be configured on the training panel

or by creating and importing a json file.

(4) The different thresholds to be used need to be

selected in the threshold selection panel.

(5) The evaluation gets started by pressing the

”Run Evaluation” button, a folder gets created

within the current folder containing all gener-

ated results stored in CSV files.

5.2. Dynamic switch

A few surveys about TSAD methods Garg et al.

(2021); Audibert et al. (2022) have made compar-

isons and discussions. They state that no model

seems to fit all contexts, and this motivates the

implementation of the dynamic mechanism. The

dynamic switch is a model selection mecha-

nism, which automatically chooses the best-suited

model for the current statistical features of the

time series based on previously obtained knowl-

edge. This leads to a better detection performance

overall, since the restriction to a single model,

which could be good for some contexts but worse

for others, exists no longer.

5.2.1. Workflow for dynamic switching of
best-suited model

In Figure. 5, the workflow for training and testing

the model selection mechanism of the dynamic

switch can be seen. The mechanism’s two major

elements are the feature extraction process and the

classifier. The dynamic switch can be configured,

trained, and tested on the platform’s dynamic

switch panel. The five different steps that make up

the workflow of the dynamic switch (see Figure 5)

are as such:

(1) A dataset containing many different anoma-

lous time series is chosen and split randomly

into a training set and a test set.

(2) A set of TSAD models is selected. All models

get tested on every time series of the training

set. Each time series gets labeled by finding

the corresponding best-performing model.

(3) For each labeled time series of the train

set, multiple statistical time series features

are extracted. Tuples of feature vectors and

their corresponding label representing the best

model for each time series are generated.

(4) The prepared data is used to train a classifier.

The network learns to output the correct labels

for a given set of features.

(5) In the testing phase, the trained classifier rec-

ommends a model according to the newly

extracted features. This model is then used

to detect anomalies in the corresponding time

series.

6. Conclusion

TSAD research using only selected datasets and

manual configuration can result in limited general-

ization and robustness. We introduce a concept for

an automated system that includes training, hyper-

parameter optimization, and evaluation across di-

verse datasets. This allows for automatic compar-

ison of state-of-the-art methods and recommends

the optimal solution.
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