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Anomaly detection is a crucial task in a wide range of industries and domains. The ability to identify abnormal
patterns and behaviors in time series data can help detect potential issues, prevent downtime, reduce maintenance
costs, and improve the overall performance of systems and processes. This paper focuses on analyzing the significant
factors that affect the accuracy and dependability of AI-based time series anomaly detection. The objective is to
provide comprehensive insights into interpreting these factors and to explore their impact on the performance. Our
study’s outcomes shall assist researchers and practitioners in selecting the most appropriate approaches for anomaly
detection tasks in diverse domains.
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1. Introduction

With the increasing complexity of modern sys-

tems, traditional methods for anomaly detection

are often insufficient or ineffective. As a result,

recently there has been a growing interest in lever-

aging artificial intelligence (AI) techniques for

time series anomaly detection. However, the inter-

pretability of AI-based models is a critical issue

that affects their trustworthiness. It is essential to

ensure their effectiveness in real-world scenarios.

Contributions: In this paper, we answer the

research question: ”What influence do different

components have on the performance of the whole

anomaly detection pipeline?”. Our toolbox, TSAD

platform, was used to perform detailed evalua-

tions of various elements of the anomaly detection

pipeline (see Fig. 1) a Each time we observe and

compare the results with one element (e.g. hy-

perparameters) changed and other elements fixed.

The tests were performed on several datasets from

awww.github.com/mbsa-tud/tsad_platform

different cyber-physical systems. We also present

the results obtained by the dynamic switch mech-

anism.

Fig. 1.: Our approach is to alter a single module at

a time, determine the contribution of influential

factors inside the anomaly detection system.
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2. Influence of the input data

During experiments, we altered individual ele-

ments, while maintaining others constantly and

compared the results. Our experiments involved

14 candidate TSAD algorithms (details of algo-

rithms and datasets can be found in our prior

work Ding et al. (2022)). The selection of model,

training, and data-related hyperparameters, were

used for the evaluations can be seen in Table

1. Some hyperparameters are inspired by a sur-

vey Braei and Wagner (2020) with minor modi-

fications. Many parameters for Machine Learning

(ML) algorithms were chosen by running several

tests and optimization, like the values for k for

the ML algorithms LOF and LDOF. We tested

the algorithms on various datasets, in the follow-

ing, we present the possible influence of different

anomalies and attributes of the time series.

Model Hyperparameter Value/- s

FC-AE #Neurons in first fc layer 32

LSTM (r) #Hidden units 64

CNN-LSTM (r)
#Hidden units 64

#Filters in conv. layers 8

TCN-AE
#Filters in temporal conv. lay-

ers
32

GRU #Hidden units 64

CNN-LSTM
#Hidden units 64

#Filters in conv. layers 32

LSTM #Hidden units 64

CNN (DeepAnT) #Filters in first conv. layer 8

ResNet #Filters in conv. layers 32

MLP #Neurons in first fc layer 32

iForest #Learners/iTrees 100

OC-SVM - -

LOF k 100

LDOF k 20

Table 1.: Selected values for model-related hyper-

parameters.

2.1. Anomaly type

To better understand the effects of different types

of faults on the detection performance of different

models, the F1 and Fc1 scores for three different

fault types including noise, offset and stuck-at

faults for the UAV and AVS datasets using the best

F1 score threshold are shown in Table 2 and Table

3. General observations regarding the different

fault types can be summarized as such:

Noise faults: For the AVS datset, the FC-AE is

by far the best model for noise faults and ML algo-

rithms, while all achieving similar scores, gener-

ally performed worse compared to DL models. On

the contrary, ML algorithms could keep up with

DL models for the UAV dataset and the LOF even

outperformed all other models.

Offset Faults: The Offset faults are dominated

by the LSTM and Hybrid CNN-LSTM prediction

models for the AVS dataset and by the TCN-AE

for the UAV dataset. With a few exceptions, the

scores have generally dropped compared to noise

faults.

Stuck-at faults: Lastly, for stuck-at faults,

LDOF and the FC-AE dominated for the AVS

dataset while LOF completely outperformed all

other models for the UAV dataset. When com-

paring these results to the scores for offset faults,

another clear drop in performance can be noticed

for most models.

Model
Noise Offset Stuck-at

F1 Fc1 F1 Fc1 F1 Fc1

FC-AE 0.9174 0.9801 0.5565 0.6117 0.4448 0.5989

LSTM (r) 0.4557 0.8219 0.4018 0.4018 0.4062 0.4062

CNN-LSTM (r) 0.6821 0.9051 0.4014 0.4015 0.4051 0.4051

TCN-AE 0.893 0.9381 0.5147 0.6442 0.3998 0.4019

LSTM 0.814 0.9128 0.6619 0.712 0.4039 0.4113

CNN-LSTM 0.5577 0.8355 0.5878 0.7138 0.4127 0.4136

GRU 0.8766 0.9444 0.5419 0.6111 0.4666 0.474

CNN (DeepAnT) 0.8424 0.9142 0.5192 0.6419 0.3868 0.3869

ResNet 0.8091 0.8823 0.4952 0.5246 0.387 0.387

MLP 0.8646 0.9417 0.5007 0.568 0.4078 0.4231

iForest 0.5756 0.5796 0.5224 0.5506 0.4003 0.4008

OC-SVM 0.5525 0.5587 0.5285 0.5342 0.3937 0.4003

LOF 0.5519 0.5678 0.4511 0.4607 0.3984 0.3989

LDOF 0.5395 0.5514 0.4734 0.4761 0.5541 0.5726

Table 2.: F1 and Fc1 scores for noise, offset and

stuck-at faults for different models. Results were

obtained on the AVS dataset using the best F1

score threshold for all models. Bold values indi-

cate the best scores for each column.

The subtlety and deviation from normal data

patterns determine the extent of performance

degradation from noise faults to stuck-at faults

in anomaly detection. Since the UAV and AVS

datasets are predominantly noise-free under nor-

mal conditions, identifying noise faults is rela-

tively straightforward. In contrast, offset faults in-

volve a fixed deviation from normal data, resulting

in a pattern that resembles normal data but with

deviations in the middle parts that can be chal-
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Model
Noise Offset Stuck-at

F1 Fc1 F1 Fc1 F1 Fc1

FC-AE 0.7245 0.8092 0.3646 0.4236 0.31 0.3101

LSTM (r) 0.5194 0.5195 0.4668 0.5516 0.3167 0.3265

CNN-LSTM (r) 0.5513 0.5715 0.4827 0.5054 0.3179 0.3508

TCN-AE 0.5195 0.5195 0.655 0.73 0.3295 0.3317

LSTM 0.6634 0.7609 0.4917 0.5436 0.3157 0.3167

CNN-LSTM 0.6656 0.8609 0.4927 0.5576 0.3321 0.3491

GRU 0.6343 0.7861 0.4006 0.4713 0.3234 0.3317

CNN (DeepAnT) 0.6269 0.7989 0.3704 0.4394 0.3366 0.3603

ResNet 0.6983 0.8101 0.4364 0.4923 0.3312 0.3403

MLP 0.5306 0.5334 0.5288 0.4693 0.3106 0.3106

iForest 0.5294 0.5298 0.5109 0.4626 0.3046 0.3057

OC-SVM 0.6295 0.693 0.2132 0.2142 0.312 0.3124

LOF 0.8525 0.8614 0.1195 0.1683 0.5618 0.6032

LDOF 0.0209 0.5051 0.4936 0.5709 0 0

Table 3.: F1 and Fc1 scores for noise, offset and

stuck-at faults for different models. Results were

obtained on the UAV dataset using the best F1

score threshold for all models. Bold values indi-

cate the best scores for each column.

lenging to detect. This makes anomaly detection

less effective than noise faults. Stuck-at faults are

the most subtle type of anomaly, particularly in

datasets with a smooth pattern like AVS and UAV

datasets, which poses a higher detection chal-

lenge. On the other hand, for datasets with more

sudden spikes or local fluctuations, noise faults

may be more difficult, and stuck-at faults may be

easier to identify.

In summary, no model can effectively detect all

types of anomalies. Although only three types of

anomalies were considered in this analysis, the

results may vary with different types of anomalies,

such as point, collective, or contextual anomalies.

2.2. Anomaly length

Another influential attribute of an anomaly, which

can affect the accuracy of an anomaly detector,

is its length. To illustrate the possible effect of

the anomaly length, the smoothed F1 scores for

different anomaly lengths for the SMAP dataset

can be observed in Fig. 2. In reality, the scores

fluctuate way more as the depicted curves might

suggest. This has to do with the fact that not only

do the lengths of the anomalies vary, but also

their overall pattern and severity. Outliers exist

on both ends of the depicted range but the shown

curve was modeled to show the rough average of

all observed F1 scores. Additionally it has to be

noted that the x-axis values indicate the length

of the longest anomaly found in each time series.

Since most time series only contain one anomaly

and if otherwise, only anomalies of roughly sim-

ilar length, the results were still considered to be

meaningful with regards to the influences of the

anomaly length.

There are two general observations to be made

regarding the models: (i) There is a decrease in

performance for lengths from 1 to 500 observa-

tions, and (ii) scores increase beyond 500. There

are several reasons for this trend. Firstly, short

anomalies are often points where the value spikes

out of the normal range, making them easy to de-

tect. Secondly, anomalies in the middle range with

lengths less than 500 are increasingly difficult to

detect. Some of these time series contain sudden

changes in data, which can lead to a lot of false

positives, as shown in Fig. 3. As a result, the actual

anomalies often receive lower anomaly scores,

leading to poor detection performance. Lastly,

anomalies longer than 500 timestamps tend to

be more trivial for the SMAP dataset, as their

values completely leave the range of what could

be considered non-anomalous.

2.3. Time series data pattern

The detection performance can also be influenced

by the overall pattern of the time series. To demon-

strate potential impacts, we chose two highly dis-

tinct subsets of the MSL dataset and assessed

the performance of all algorithms on them. Fig.

3 shows the ”p-11” subset, a smooth time series

that rises constantly before dropping abruptly, the

anomaly root cause is the rise and drop of the

value occurs about 4 times faster. Fig. 4 shows

the ”t-12” subset, a noisy time series, the anomaly

root cause is (i) a higher noise level and (ii) a

spike. In both figures, the topmost axes depict the

anomalous time series, and the anomaly scores

and detected anomalies for each model are shown

below. All other axes show the model’s anomaly

scores in blue, the best F1 score threshold as a red

horizontal line, and the detected anomalies as red

areas. Green areas indicate the true anomaly.

Fig. 3 shows the result with a window size of

100. When analyzing the ”t-12” subset, all anoma-
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Fig. 2.: Comparison of F1 scores for different anomaly lengths for the SMAP dataset using the best F1

score threshold. The value on the x-axis indicates the length of the longest anomaly in the tested time

series.

lies are detected by DL models event wisely. But

ML models (the last three axes) perform better

detection, especially LOF, and LDOF. The nor-

mal sudden drops result in inevitable spikes in

the anomaly scores, resulting in false positives.

At every time window, DL assigns each point a

unique anomaly score, while ML assigns a single

score vector to the entire subsequence. Therefore

only DL models can do detection in a streaming

way. If the window size decrease, ML models will

raise worse detection.

Fig. 3.: Anomaly detection for the ”t-12” dataset

Compared to ”t-12” this time DL model per-

forms better when analyzing the ”p-11” subset.

Fig. 3 shows the result using the point-wise best

F1 score threshold, the threshold got set very low

to improve the true positives. It is beneficial for the

ML models, as if the threshold is a bit higher, the

iForest and OC-SVM will fail to detect the second

anomaly and LDOF will fail to detect the first

anomaly. By setting a higher threshold, the DL

models could receive almost perfect event-wise,

point-adjusted and composite scores.

Fig. 4.: Anomaly detection for the ”p-11” dataset

3. Influence of algorithms

3.1. Univarite datasets

Table 4 shows the F1 scores for all tested mod-

els/algorithms for the univariate datasets (MSL,
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SMAP, AVS and UAV) using the best F1 score

threshold.

Model MSL SMAP AVS UAV

FC-AE 0.5102 0.6005 0.5513 0.4042

LSTM (r) 0.5083 0.4644 0.2999 0.3158

Hybrid CNN-LSTM (r) 0.5107 0.4998 0.4636 0.3665

TCN-AE 0.4872 0.4144 0.4442 0.3219

LSTM 0.4698 0.5141 0.4516 0.3517

Hybrid CNN-LSTM 0.4445 0.4854 0.3884 0.3872

GRU 0.462 0.5114 0.4542 0.317

CNN (DeepAnT) 0.4285 0.4929 0.4262 0.3326

MLP 0.4162 0.5219 0.4496 0.4139

iForest 0.6964 0.6787 0.3951 0.3126

OC-SVM 0.5183 0.6596 0.4286 0.3145

LOF 0.5874 0.5175 0.4179 0.3574

LDOF 0.424 0.4323 0.4976 0.4935

Table 4.: Average F1 scores for all univariate

datasets using the best F1 score threshold. Bold

values indicate the best scores for each dataset.

For both the MSL and SMAP dataset, the iFor-

est is the clear winner. While the FC-AE clearly

dominates the AVS dataset, the LDOF algorithm

performs best for the UAV dataset. While this ta-

ble might suggest that classic ML methods outper-

form DL models, Fig. 5 paints a different picture.

It shows boxplots for the F1 scores for all mod-

els/algorithms using the best F1 score threshold.

The results are combined for all tested univari-

ate datasets. The red lines indicate the median

scores and 50% of all scores fall within the blue

boxes. Classic ML methods no longer seem to

outperform, but the iForest is still the clear winner

for the category of ML. Predictive models show

similar performance overall with the exception of

the Hybrid CNN-LSTM predictor as it generally

performed worse. The performance of reconstruc-

tive models shows a lot more fluctuation across

models. The Hybrid CNN-LSTM reconstructor

for example has the highest median F1 score,

while the TCN-AE shows a very big variance. In

general, no model can be considered as the best

model overall.

3.2. Multivariate datasets

Table 5 compares the results for the SMD dataset

using the best F1 score threshold for the two meth-

ods of anomaly detection for multivariate time

series: Aggregated scores and aggregated detec-

tion. The method of aggregating the channel-wise

Fig. 5.: Boxplots for F1 scores for all univariate

datasets.

scores generally improves the performance of the

DL models compared to aggregating the channel-

wise detections. For all DL models, higher F1

scores were obtained by aggregating the scores

before applying the threshold. The same obser-

vation can however not be made for the Fc1

scores. Since the results were obtained by using

the best F1 score threshold and point-wise and

composite scores don’t necessarily correlate, this

is considered irrelevant. The classic ML algo-

rithms (iForest, OC-SVM, LOF and LDOF) were

not trained/tested separately for each channel and

for this dataset, the time series was only split into

subsequences for DL models. The iForest and OC-

SVM could however still keep up or even out-

perform DL models. LOF and LDOF performed

worse compared to all other models.

Model
Aggregated scores Aggregated detection

F1 Fc1 F1 Fc1

FC-AE 0.4574 0.549 0.4022 0.4711

LSTM (r) 0.4548 0.5781 0.4278 0.5018

Hybrid CNN-LSTM (r) 0.4639 0.4812 0.391 0.6197

TCN-AE 0.5017 0.6765 0.4855 0.6238

LSTM 0.4917 0.5773 0.4691 0.6335

Hybrid CNN-LSTM 0.4752 0.6001 0.4242 0.455

GRU 0.4617 0.5813 0.4062 0.6131

CNN (DeepAnT) 0.483 0.566 0.436 0.6049

MLP 0.4791 0.5677 0.4445 0.5894

iForest 0.4937 0.5723 0.4937 0.5723

OC-SVM 0.4985 0.568 0.4985 0.568

LOF 0.2923 0.4054 0.2923 0.4054

LDOF 0.1884 0.2148 0.1884 0.2148

Table 5.: F1 and Fc1 scores for all models for the

multivariate SMD dataset. For DL models the two

scoring methods, aggregated detection and aggre-

gated scores, are compared. ML models show the

same values for both since only one method of

detection was used. Bold values indicate the best

scores for each category.
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3.3. Influence of hyperparameters

To illustrate the possible effect of choosing the

correct hyperparameters, the FC-AE was opti-

mized using the platform’s built-in bayesian op-

timization function to achieve the best possible

F1 score. Through our experiments, most hyper-

parameters do not have a great impact on the de-

tection performance, but changing the number of

neurons and the size of the sliding windows/sub-

sequences w will raise different results. Therefore

they are considered the most relevant. Table 6

compares the hyperparameters and obtained F1

scores before and after running the optimization

for 30 iterations.

Hyperparameter Initial Optimized

#Neurons 32 10

Window size 100 396

Score Initial Optimized

F1 0.2873 0.4015

Fe1 0.5 0.0126

Fp1 0.2875 0.6286

Fc1 0.2873 0.4812

Table 6.: Hyperparameters and achieved F1 scores

before and after optimizing the window size and

number of neurons for the best F1 score for the

FC-AE. The optimization was run for 30 itera-

tions. Bold values indicate the column-wise best

scores.

All F1 scores with the exception of the event-

wise Fe1 score dramatically improved after the

optimization process. This inconsistency exists

because even though the total number of false

positive points declined, the optimized model de-

tected a lot more false positive events, thus lower-

ing the event-wise scores dramatically. Since the

optimization algorithm tried to find hyperparam-

eters resulting in the best possible F1 score, the

improvement of the F1 score was expected. Better

Fp1 and Fc1 scores are a welcomed side effect that

wasn’t necessarily expected, as the different types

of evaluation metrics don’t always correlate with

each other. When comparing the hyperparameters

as they were before and after optimization, it be-

comes apparent that the window size has changed

more dramatically compared to the number of

neurons.

Fig. 6.: Example of optimizing the window size w

of the subsequences and the number of filters for

the CNN-LSTM.

Fig. 6 shows an example of the optimization

process for the CNN-LSTM. The red area indi-

cates the mean of all observed scores for the dif-

ferent combinations of window size w and number

of filters. It is rather flat when varying the filters

and a much steeper slope can be observed for dif-

ferent values for w. This again indicates a greater

impact on the window size as for the FC-AE. In

general, it can be concluded, that the setting of the

correct window size is amongst the most crucial

aspects of configuring a good anomaly detection

pipeline.

4. Influence of postprocessing methods

4.1. Influence of thresholding methods

One of the most significant factors affecting de-

tection performance is the thresholding method.

Varying the threshold can dramatically change the

resulting scores. To illustrate this, Fig. 7 and Fig.

8 show the F1 and Fc1 scores for all tested model-

s/algorithms for six different thresholds: The top-

k, dynamic, best F1 score, best Fe1 score, best Fp1

score and best Fc1 score threshold.

The most important observations can be sum-

marized as such:

Best F score thresholds: The best Fe1 score

and best Fp1 score threshold impact the F1 and
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Fig. 7.: Comparison of F1 scores for different

thresholding methods for the SMAP dataset.

Fig. 8.: Comparison of Fc1 scores for different

thresholding methods for the SMAP dataset.

Fc1 scores in different ways. These thresholds

are all supervised, meaning they require a labeled

anomalous validation set VA to be computed.

Top-k threshold: The top-k threshold seems

to have a much higher correlation to the F1 score

than the Fc1 score. Since it is a supervised thresh-

old that gets set by using a labeled anomalous

validation set VA, it shares the same flaws as the

best F score thresholds.

Non-parametric, dynamic threshold: The

dynamic threshold requires no prior knowledge

of the distribution of anomaly scores, but will

always detect at least one anomaly per window,

making false positives inevitable for these tests.

Furthermore, the dynamic threshold’s necessary

parameters are highly dependent on the context,

making it unsuitable for an automated anomaly

detection system.

4.2. Influence of evaluation metrics

It can be observed from Fig. 7 and Fig. 8, that

achieving a high composite Fc1 score is generally

easier than achieving a high point-wise F1 score.

While the maximum observed F1 score has a

value of about 0.7, Fc1 scores often reached a

value of 0.9. This difference exists because the

point-wise metrics are stricter when compared to

event-wise, point-adjusted, or composite metrics.

Fig. 9 shows a synthetic test case to compare

different evaluation metrics. The topmost row dis-

Fig. 9.: Comparison of evaluation metrics for dif-

ferent synthetic test scenarios. The value of each

point is 1 (high) for anomalies and 0 (low) for a

fault-free detection.

plays the ground truth labels, followed by several

synthetic detected labels. The table on the right

shows the F1, Fe1, Fp1 and Fc1 scores achieved

for each scenario. When comparing the different

metrics, it becomes apparent that they can vary

dramatically even for the same scenario. Most

noticeable are the following differences:

(1) The first scenario depicts a random detection,

but most detected anomalies fall within true

anomalous sections. The point-adjusted Fp1

score rewards this scenario the most.

(2) Just one observation within each true anoma-

lous segment is labeled as anomalous,

anomaly detected, still resulting in a very poor

point-wise F1 score.

(3) The entire time series is detected as an

anomaly. While this results in a perfect Fe1

score of 1, all other scores are rather bad.

(4) This scenario is similar to scenario 2) with

the addition of three false positive points. The

scores range from 0.0172 for the F1 score to

an almost perfect Fp1 score.

(5) If all anomalies are detected entirely with only

a small number of false positive points, all

scores are close to perfect with the exception

of the event-wise Fe1 score.
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Understanding which aspects are emphasized

by each metric is crucial. The F1 score rewards

a model that detects most anomalies with fewer

false positives, but it can still perform well even

with numerous false positives. The Fe1 score fa-

vors detectors that overlap with at least one true

anomalous segment and have few false positives,

but large detected segments can still achieve a

perfect score. The Fp1 score is beneficial to single

true positive points within an anomalous segment,

potentially detecting random points as anomalous.

The Fc1 score rewards detectors with high point-

wise precision and event-wise recall. Choosing an

appropriate metric depends on the ideal anomaly

detector’s expectations and the specific context.

5. Influence of a dynamic switch
mechanism

No model is best for all contexts. The dynamic

switch mechanism represents an attempt to solve

this problem. Time series of the anomalous testing

set were randomly assigned into the train and test

set for the dynamic switch, equally distributing

them across both. After the models were trained,

for each time series of the training set the best

model was computed by comparing the F1 scores.

The subsequent training of the DNN classifier and

the evaluations on the test set lead to the results

shown in Table 7 for the AVS dataset.

Model F1 Fe1 Fp1 Fc1

Dynamic Switch 0.6917 0.9637 0.7504 0.7363

FC-AE 0.5209 0.8337 0.6763 0.6408

LSTM (r) 0.3889 0.9139 0.4097 0.3943

CNN-LSTM (r) 0.4575 0.6646 0.5953 0.5631

TCN-AE 0.4213 0.6226 0.5662 0.5164

LSTM 0.4581 0.6419 0.531 0.504

CNN-LSTM 0.4428 0.7011 0.5587 0.5166

GRU 0.4535 0.6076 0.5354 0.5061

CNN (DeepAnT) 0.4443 0.5646 0.4949 0.4816

ResNet 0.4695 0.5818 0.5492 0.5222

MLP 0.4607 0.5668 0.5436 0.5155

iForest 0.4018 0.6591 0.4188 0.4154

OC-SVM 0.4018 0.7045 0.4316 0.4194

LOF 0.41 0.9432 0.4458 0.4245

LDOF 0.4932 0.9752 0.5078 0.501

Table 7.: Results for the dynamic switch and the

individual models for the AVS dataset. Bold val-

ues indicate the best scores.

Fig. 10.: Examples of models recommended/se-

lected by the dynamic switch for the correspond-

ing time series of the AVS dataset.

Fig. 10 shows three examples of the models se-

lected by the dynamic switch for the AVS dataset.

It recommends the FC-AE for noise faults, the

LSTM for offset faults and the LDOF dominated

for stuck-at faults. The recommendations by the

dynamic switch are consistent with the former

analysis (Section. 2.1). The recommendation of

an anomaly detection method shows very promis-

ing results and may help in configuring a better

anomaly detection pipeline.

6. Conclusion

The interpretation of influential factors plays a

vital role in ensuring the reliability of anomaly

detection results. Therefore, this paper aims to

present a comprehensive analysis of the influential

factors for AI-based time series anomaly detection

and provide insights into their interpretation. The

findings of this study shall guide researchers and

practitioners in selecting the most suitable ap-

proaches for anomaly detection tasks in different

domains.
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