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With autonomous vehicles on the brink of a revolution, there is an increased need for reliable individual driving
functions and the overarching vehicle. Classical assessment techniques for such systems, which assume that future
states depend only on the current state, include Failure Modes, Effects and Diagnostic Analysis (FMEDA), or
classic Markov models, also recommended by IEC 61508, ISO 26262, and SOTIF ISO 21448. More realistic are
memoryless approaches like the Monte Carlo simulation of Markov chains. However, these are computationally
expensive. As an in-the-loop component to assess the safety of autonomous vehicles, Markov models essentially
become the bottlenecks of the toolchain. In this context, trained neural networks are excellent tools to replicate the
behavior of the Markov models rendering them an excellent in-the-loop component. To this end, the current work
demonstrates that the deep learning models are capable of learning and generalizing the behavior of the Markov
models.
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1. Introduction

The automotive industry is slowly diffusing from

manual to autonomous vehicles. This paradigm

shift is not only for the reduction of human error,

but also for the efficient use of energy, reduced

emissions, increase safety, and other economic

benefits [1]. There is a significant investment in

developing the technology. However, recent ac-

cidents involving driverless cars have influenced

public opinion on the use of these vehicles. This

motivates the need to assess the safety of au-

tonomous vehicles both rigorously and in time.

Markov models have played a significant role in

progressing the technology of autonomous driv-

ing (AD). For example, hidden markov models

(HMM) are used to make accurate estimations

of the driver state during pre-crash scenarios [2].

Further applications include assessing risk and un-

certainty, fault detection and diagnostics [3], and

human-machine interactions.

One such methodology involves combining

Markov models with Monte Carlo methods to

identify vulnerabilities, and failure scenarios us-

ing stochastic simulations. As explained in Sec-

tion 3, the method starts with an initial state def-

inition of the system, and the Markov model is

executed to predict the failure probabilities. For

such a method, the computation of huge Markov

models with states in the order of thousands could

essentially become the bottleneck of the toolchain.

This motivates us to look for computationally

cheaper alternatives to the Markov process.

To address this problem, deep neural networks

are introduced [4, 5]. Neural networks (NN) rep-

resent an alternative computational paradigm in

which the solution to a problem is learned from a

set of examples. NN provides a set of techniques

for solving problems spanning pattern recogni-

tion, control, and data analysis [6]. The advantages

include high processing speed and the ability to

learn even from very complex sets of patterns

which can be missed in manual pattern matching.

For NN, training is the most computationally ex-

pensive step. However, once trained, the network

can process new data rapidly. The scope of the cur-

rent work is to establish a deep learning method

as an alternative to the Markov process for com-

ponent failure analysis in modern AD vehicles.
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The approach is to use an existing Markov

model of a given number of states to generate

the training data for the NN. Once trained, the

NN emulates the Markov chain and is able to

predict the correct state probability distribution for

a given transition matrix, which is the output of a

converged Markov model.

The paper is further divided into five sections.

Section 2 summarizes the use of Markov models

in AD and the application of NN in similar prob-

lems. Section 3 briefly explains the approach of

training a NN with Markov model state transition

matrices and state probabilities. Section 4 presents

the Markov process set-up along with the specifics

about the input and output data needed for the

training of NN as well as NN design details. Sec-

tion 5 discusses the results of training and con-

vergence of NN predictions and compares them

with the results of the Markov model. Finally,

Section 6 summarizes the paper and discusses the

future scope of the work.

2. Related Work

As the Industry progresses, there is an increase

in the extent of dependency on electronic com-

ponents in automotive vehicles. ISO 26262 is a

standard that deals with the functional safety of

the E/E (Electric and Electronic) components of a

road vehicle [7]. Markov models have been widely

studied for this application. For example, in [8],

a generic Markov model is proposed for electric

and electronic systems. In [3], the authors use

semi-Markov processes to analyze the safety of

AD vehicles. The paper [2] uses Hidden Markov

Models for driver behavior near road intersec-

tions. Markov-model-like methods have been used

to model the safety of AD functions [7].

Machine learning on the other hand has also

been widely applied in the domain of autonomous

vehicles. In [9], the authors summarize the tech-

nologies and different aspects of deep learning

used in autonomous vehicles. This includes per-

ceptrons, convolutional neural networks (CNN),

long-short term memory (LSTM) based models,

and reinforcement learning-based models. CNNs

and LSTMs have been used to solve complex

problems like steering angle and velocity control,

recurrent NN for lane keeping, and obstacle avoid-

ance [10].

Having mentioned the above methods, there

is limited work being done in the direction of

emulating the behavior of Markov models. In the

current work, we are presenting an approach to

learning the behavior of Markov models using a

multi-layer perceptron-based NN for functional

safety analysis of AD vehicles. With this motiva-

tion, the current paper tries to emulate a converged

Markov process using NN.

3. Methodology

A continuous-time Markov chain (CTMC) is

essentially a coalition for several discrete-time

Markov chains with varying transition rate param-

eters. Fig. 1 shows a simplified model of a two-

state non-homogeneous CTMC. For a given state-

space arrangement, the input is a time-dependent

state transition matrix Q(t) and the output is the

state space distribution, i.e. P (t), essentially reg-

istering the probability to be in each state for each

time step. If the time axis is decoupled the model

output represents the state distribution for a given

transition matrix.

Fig. 1.: Model of a two-state CTMC with two

possible transitions.
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Keeping this idea in mind the paper proposes

a deep learning architecture based on multilayer

perceptron trained on the sparse data generated

using the Monte Carlo Markov chains (MCMC).

As shown in Fig. 2, the input to this network is the

transition matrix and the output is the state space

distribution.

Fig. 2.: Methodology diagram showing the resem-

blance of the two approaches. The orange high-

light shows the Markov approach and the green

highlight shows the Deep learning approach.

In order to generate the training data, random

discrete MCMC simulations are executed. Each

simulation corresponds to one data point. For

huge networks with states in the order of 1000,

data generation is resource intensive. In the NN

approach, it is a pre-deployment step and can

be completed independently of other in-the-loop

components. Once the NN is trained, which is

another resource-intensive phase but completed in

the pre-deployment phase, the state distribution

can be estimated with a single feed-forward step.

4. Setup

For the current study, we propose a state space

model with five states as shown in Fig. 3a. The

plot in Fig. 3b shows the evolution of state distri-

bution over time for a randomly generated initial

transition matrix. Since we are working with time-

dependent transition rates, the subsequent transi-

tion matrices for each time step are derived using

(a) State space model with 5-states.

(b) Time evolution of the states.

Fig. 3.: State space model with 5 states and a

sample time evolution of probability distributions

for a randomly generated transition matrix. The

transition rates are updated using Weibull distri-

bution.

a Weibull hazard function (see Eq. (1)) with con-

stant shape parameter α = 2 and scale parameters

λij with qij being the Q-matrix entries:

qij(t) = αλij(λijt)
α−1, i �= j, i, j = 0, 1, ..., N

(1)

The multilayer perceptron used in this article

has 25 feature nodes corresponding to each el-

ement of the transition matrix and five output

nodes that correspond to the steady state prob-

ability for a given transition matrix. The overall

configuration of the NN is shown in Fig. 4. It has

four hidden layers all using the sigmoid activation

function [11]. All features, i.e. the transition rates,

are normalized before feeding to the network.

The final layer consists of the softmax activation

function [11] which normalizes the output to a

probability distribution.

The configuration and structure of multilayer

perceptron greatly decides the accuracy of the

predictions. This article focuses on the approach
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Fig. 4.: Architecture of deep NN with layer con-

figurations.

of behavior replication of the Markov chain within

an acceptable error margin. Further studies are

needed on hyperparameter optimization to achieve

precise state estimations.

5. Results and Discussion

Using the Markov model, a total of 240800 data

points were generated which are subsequently

used for training, validation, and testing of the

NN. For testing post-training and validation, a to-

Fig. 5.: Learning curve showing the evolution and

corresponding reduction of training and cross-

validation mean squared error over the number of

epochs.

Fig. 6.: Mean squared errors (MSEs) estimations

of the predictions with respect to the ground truths

for each state of the Markov model shown in

Fig. 3a. Blue bars show the mean of MSEs and

the black limiters show the distribution (standard

deviation) around the means.

tal of 10% data was kept separate. The remaining

data is used for training and cross-validation with

a 30% cross-validation split.

The NN was trained for 65 epochs with a batch

size of 1000 data points. To prevent overfitting,

we used early stopping with an early stopping

patience of 2 epochs. As seen in Fig. 5, training

error and correspondingly cross-validation error

reduce over the number of epochs depicting that

the network is able to find and learn the pattern in

the data.

The trained model is then used to predict esti-

mations on the test dataset. Fig. 6 plots the mean

squared error (MSE) of the probability distribu-

tion of all the five states of the introduced Markov

model. It shows that the average MSE of all states

is under 1E-03.
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(a)

(b)

(c)

(d)

(e)

Fig. 7.: Histogram of error values (Δ) between

predicted state probabilities and the corresponding

ground truth.

Fig. 7 plots the distribution of error values (Δ)

which is the difference between predicted state

probabilities and the corresponding ground truth.

The distribution of all the error points for each

state almost follows a Gaussian distribution with

the mean centered close to zero. These distribu-

tions show the accuracy of the presented approach

to replicate the behavior of Markov chains using

NN. Although in this article such distributions are

not used, a potential application is to use them in

a post-processing stage to increase the prediction

accuracy.

Fig. 8 shows an end-to-end application of the

documented approach to replicate the behavior of

the continuous-time Markov chains for the state

probability estimation of the state space model

shown in Fig. 3a.

(a)

(b)

Fig. 8.: An end-to-end estimation of state evolu-

tion of the state space model presented in Fig. 3a

using deep learning model shown in Fig. 4 repli-

cating the process of continuous-time Markov

chains.

Fig. 8a presents the results with a very slight

deviation from the ground truth. On the other hand

Fig. 8b shows that the result could also drift far

away from the ground truth indicating a need for
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hyperparameter optimization of the deep learning

model.

6. Conclusion and Outlook

In this work, we presented an approach to repli-

cate the behavior of CTMCs using deep learning,

specifically a multilayer perceptron. To generate

the data for the training of the NN, we used a state

space model with five states where transition ma-

trices, i.e. interconnections, were generated ran-

domly.

We show that deep learning methods can ef-

ficiently learn the pattern corresponding to the

Markov chains and are able to generate probability

distributions of states within acceptable margin er-

ror. Using this approach, we are capable to replace

the in-the-loop components where Markov chain

simulations using traditional approaches can be a

bottleneck. The application of the approach is not

only limited to the autonomous vehicles but can be

extended to other domains where Markov chains

are applied intensively, for example, in compo-

nent failure analysis of power and manufacturing

industries.

Although the approach is successful, there

is still more work to be done. Hyperparameter

optimization of the deep learning model along

with imposing some initial conditions can fur-

ther increase prediction accuracy. Another attempt

would be to use error distributions to further refine

the predictions in a post-processing step.
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