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This work investigates rule-based controllers (RBCs) and reinforcement learning (RL) agents for managing
distributed electrical batteries in a net-zero energy community (NZEC) and reducing costs and emissions for the
community. The RBCs are based on deterministic rules, hence, may fail to adapt to new scenarios and uncertainties.
On the other hand, RL agents learn from direct interaction with uncertain environments and can better adapt to
new conditions. A novel RL approach is proposed, combining MaskPPO and a deep neural network, to avoid
the exploration of unsafe/unprofitable actions and enhance control efficacy through accurate predictions of future
demand. These new approaches are demonstrated on the NeurIPS 2022 CityLearn challenge where real-world data
from a district in California are embedded within a simulator for distributed battery control. Points of strength and
limitations of the different tools discussed. For comparison sake, an oracle-driven controller is also considered as
it gives a reference best-achievable optimum for the challenge problem, i.e., lower bounds on costs and emissions
reduction scores. Based on the results, RL agents generally offered robust control over the distributed batteries and
often outperformed the rule-based controllers. Additionally, the combination of action masks and neural forecasters
significantly improved the performance of the RL agents, bringing them very close to the scores achieved by the
global optimum. A study of the model’s robustness to seasonality changes concludes this work and further illustrates
the generalization ability of controllers.
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1. Introduction

Net-Zero Energy Communities are groups

of buildings that, through intensive use of

renewable sources and collaborative onsite

management of available energy, minimize

their dependency on external energy suppli-

ers while enhancing the sustainability and

profits of the community. For these groups

of buildings, optimal control of the available

storage units (ST) is essential to reduce de-

mand peaks, fill demand valleys and, finally,

lower consumptions, costs, and emissions Ul-

lah et al. (2021). The problem of distributed

ST control in NZEC has been addressed

by various authors applying different tech-

niques, e.g., deterministic rule-based con-

trol methods, Drgoňa et al. (2020), stochas-

tic models, Medici et al. (2017), distribution-

ally robust Gray et al. (2022) and risk-based

methods Parvar and Nazaripouya (2022) and,

recently, RL methods, Duque et al. (2022).

RBCs define actions based on deterministic

rules on known factors, e.g., time of day

or load demand. Alternatively, rules can be

informed by uncertain prediction of future

quantities, such as loads or renewable PV

productions Medici et al. (2017). RBCs are

probably the most widely applied in practice

due to their simple implementation. How-

ever, because of the uncertainty in future en-

ergy demand and renewable production, un-

foreseen scenarios can occur and undermine

their effectiveness. If not optimized, RBC

controllers usually lack robustness against
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uncertainties and do not adapt well to un-

foreseen operational conditions. Robustifica-

tion strategies, that is, fine-parameter tuning

and careful assessment of relevant uncertain-

ties, are essential to guarantee a good per-

formance. In contrast to RBCs, a reinforce-

ment learning agent searches for an optimal

control policy by directly interacting with

an uncertain environment Sutton and Barto

(2018). Because of this, RL agents are nat-

urally more adaptable and better fitted to

deal with natural variability and uncertain-

ties. Advanced training algorithms, such as

Proximal Policy Optimization (PPO), can be

applied to handle mixed integer state-actions

spaces and allows a district-centralized agent

or building-specific controllers to be defined.

Unfortunately, RL agents require long explo-

ration periods and many observations before

learning a useful control policy. Moreover,

due to inherent safety concerns of apply-

ing exploratory action to real systems, high-

fidelity simulators are required beforehand

to train the agent offline pre-deployment

Rocchetta et al. (2019). However, simula-

tors are not always available. To overcome

these limitations, algorithms like the Mask-

able PPO Garcıa and Fernández (2015) have

been recently introduced and allow training

the agent while only applying actions that

are safe/feasible. Maskable PPO algorithms

speed-up the learning process while reduc-

ing the risk of large economic losses and un-

safe control trajectories, potentially leading

to catastrophic failures.

The paper proposes novel rule-based and

deep RL agents for managing distributed

electrical storage in NZECs. The control ob-

jective is to minimize CO2 emissions and

electricity costs of an energy community

while enhancing its ability to operate inde-

pendently from the external power grid, e.g.,

by shifting and flattening the energy demand

profile. Specifically, three optimized RBCs

are proposed and prescribe deterministic

control actions based on observed, predicted,

and historical energy demands of the indi-

vidual buildings. These three RBCs are com-

pared to new deep RL agents trained with

the Maskable PPO algorithm and equipped

with action masks (constraints) and a neural

predictor for future building energy demand.

The action constraints ensure that only fea-

sible actions are explored based on the ob-

served State of Charge (SoC) and energy de-

mand of batteries. In addition, a new mask

function is also investigated and imitates the

daily charge/discharge profiles from an opti-

mal RBCs and showed promising results. The

efficacy of the proposed controllers is demon-

strated in the NeurIPS 2022 - CityLearn Chal-

lenge, a new gym environment for developing

centralized and distributed RL controllers for

NZEC. Furthermore, by equipping the agents

with 10-hour-ahead energy demand predic-

tions, additional improvements are observed

in load-shaping reward, cost savings, and

emission reduction. The proposed RBCs and

RL agents are compared to a random con-

troller and a no-storage case, and an Oracle-

driven Model Predictive Controller (MPC)

is introduced to find an approximation for

theminimum achievable costs and emissions,

i.e., a proxy for the global optimum. The pa-

per concludes with an analysis of the con-

troller’s seasonal performance and its ability

to handle new scenarios through generaliza-

tion.

2. Preliminaries

This work considers sequential decision-

making formulated as Partially Observable

Markov Decision Processes (POMDPs),

(S ,A,T ,R,Ω,O, f0,T ,γ) ,
where S is a state space, A is an actions

space, T is a set of conditional transition

probabilities, R : S × A → R is a reward

function, Ω is a set of observations, O, are
conditional observation probabilities, T is the

episode horizon, and γ is a reward discount

factor. The goal of the decision-maker is to

prescribe the best actions, i.e. an optimized
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control policy π� so that the expected cu-

mulative sum of discounted reward is max-

imised, Eπ�

[∑T
t=0γ

trt(at,ot)
]
.

Note that this problem admits both a cen-

tralized and decentralized version. In cen-

tralized control, a single agent makes de-

cisions for the entire community based on

a common policy, whereas in decentral-

ized control, multiple agents make decisions

based on local policies and information. For-

mally, a centralized battery control policy,

π, maps observations to actions for the en-

tire community (Ω → A), while decentral-

ized controllers, πb, define steps for individ-

ual buildings (Ωb → Ab) based on local and

shared observations. The optimized policy

π� maximizes the rewards for the district,

whereas π�
b focuses on individual buildings

and may require coordination to optimize

district-level rewards.

3. The CityLearn Gym environment

We adopt the simulation environment de-

scribed by theNeurIPS 2022 - CityLearn Chal-

lenge Nweye et al. (2023). Five buildings

in a set of buildings B define the NZEC,

each equipped with batteries and PV gener-

ators. In an episode, the environment replays

one year of historical data down-sampled to

hourly resolution, i.e., time series of load de-

manded and PV produced by the building,

weather, costs, and emission observations.

For each step (an hour) in an episode, the

energy balance for building b is computed

and given by:

ENS
h,b = Eh,b +EST

h,b (a), ∀b ∈ B (1)

where ENS
h,b is the non-shiftable energy de-

mand, Eh,b = EM
h,b − EPV

h,b is the difference be-

tween energy demand and PV production

(from data) and EST
h,b (a) is the energy output

of the battery, i.e., a function of control action

a taken by the agent at the previous time

step. Note that ENS
h,b must be satisfied by the

external grid regardless of the actions taken

and energy produced by the PVs.

3.1. Observations and actions

At each time step, the environment re-

ceives an action vector, a = (a1, .., ab, ..., anb ) ∈
A and returns an observation vector, o =

(o1, ..., ob, ..., onb ), and a reward. Each bat-

tery/building receives an action ab ∈ [−1,+1],
where ab > 0 indicates charging and re-

turns an observation, ob = (osh,op,b) ⊆ R
28

comprising a community-shared term, osh =(
t,W ,Ŵ ,δem

)
and building-specific term,

op =
(
EM,EPV ,SoC,ENS ,δel , δ̂el

)
, i.e., private

observations. The first observation vector in-

cludes a time-stamp, weather variables and

perfect predictions, and carbon pressure δem

that is an emission cost expressed in [
kgCO2
kWh ].

The private term includes energy demand,

PV production, SoC, electricity price and

three perfect forecasts for the next 24 h

prices. Note the high-dimensionality of the

problem with o ∈ R
140. However, it can be

lowered to R
44 by removing shared obser-

vations and identical electricity price dupli-

cates for the 5 buildings.

3.2. Reward function

The following modified reward function is

used in this work:

rh = −
nb∑
b=1

(
Cel
b,h +Cem

b,h + rshb,h
)

(2)

where Cel is the clipped cost of energy de-

mand, Cem is the clipped cost of carbon emis-

sions, and rshb,h =
E2
b,h−(ENS

b,h )
2

β is a load shap-

ing reward, a penalizing term for missed

peak-shaving and valley-filling. The param-

eter β defines asymmetric rewarding of peak-

shaving, i.e., β = 10 if ENS
b,h > 0, and valley

filling, β = 100 if the net demand is negative.

3.3. Key performance indicators

We use normalized KPIs to evaluate the

controllers with respect to a reference pol-

icy π0, that is, a case without batter-

ies. We adopt the cost metric m1(τ;π) =∑τ
h=0C

el
b,h(π) /

∑τ
h=0C

el
b,h(π0), defining the av-

erage normalized electricity price until step τ
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and, similarly, we also adopt a metric m2 and

m3 which are as normalized emission cost

and a normalized grid cost, respectively. The

latter, relates to congestion management and

stability issues and is a function of ramping

and load factors, see the original challenge

description for further details.

4. The proposed approach

The proposed load predictor, rule-based con-

trollers, oracle-driven MPC, and deep RL

agents are introduced next.

4.1. Electric load forecasting

We predict the energy demand for each b ∈
B in the next H hours. For this, we train a

neural network model on the observations

collected from the last K steps. The resulting

NN predictor is given by:(
Êh+1, ..., Êh+H

)
= f (oh, ..., oh−K ;ω) , (3)

where ω are trainable parameters, and Êh+j

are 5-dimensional vectors of load predictions

for j-hours ahead (one for each building). As

an example for H = 1 and K = 12, a fully

connected network with 312 input nodes

(plus flattening and batch normalization lay-

ers), three fully connected hidden layers with

(600, 300, and 80 nodes) and five output

nodes, for a total of 393,209 trainable pa-

rameters achieved very high prediction per-

formance. Parameter tuning, pruning, and ar-

chitectural optimization can further improve

accuracy and efficiency but are out of the

scope of this work and not further consid-

ered.

4.2. Optimized Rule-based controllers

The optimization problem for the RBC is de-

fined as follows:

min
p

3∑
i=1

mi (τ;π(o;p)) (4)

where p is a vector of parameters defining the

policy π(o;p) and the objective is to minimise

the sum of normalized electricity cost, carbon

emissions, and grid stability-stability-related

scores. Three RBC policies are considered:

(i) Persist, where actions are based on the

present energy demand, (ii) Predict, where

actions are selected based on the next-hour

prediction Êh+1, and (iii) μ-daily that select

actions based on the hour of the day. The

mathematical definition of an action ab in (i)

and (ii) is given by:

ab =

⎧⎪⎪⎨⎪⎪⎩p1Eb if Eb ≤ 0

p2Eb if Eb > 0
, ∀b ∈ B, (5)

where Eb refers to the observed net demand

at time h for the Persist agent and to the pre-

dicted demand at h+1 for the Predict policy.

The μ-daily defines an optimal average daily

charging/discharging profile as follows:

ab =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1,b if h = 1

... ...

p24,b if h = 24

,∀b ∈ B, (6)

where 24× nb parameters must be optimized

and the μ-daily actions only depend on the

hour of the day.

4.3. Oracle-driven MPC

We propose an oracle-driven MPC, a linear

bi-objective optimization model, where fu-

ture net energy is known, that minimizes

both the electricity (z1) and emission costs

(z2) in a lexicographic order over the set

of buildings B and the whole time horizon

T . The optimal solution represents a lower

bound with respect to the minimum electric-

ity costs and emissions achievable for this

challenge. In our formulation, we describe

our main control actions with variables cb,h
and db,h which represent, respectively, the en-

ergy charged and discharged by the batteries

in each building b ∈ B and for each time

step h ∈ T . The first objective function z1 is

defined as follows:

z1 = min
∑
h∈T

Cel
h (7)

Cel
h ≥ δelh

∑
b∈B

(
Eh,b + cb,h − db,h

) ∀h ∈ T
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where Cel
h is a non-negative community elec-

trical cost and δelh is the electricity price at

time h. The second objective function (z2) is
instead the following:

z2 = min
∑

b∈B,h∈T
Cem
b,h (8)

Cem
b,h ≥ δemh

(
Eh,b + cb,h − db,h

) ∀b ∈ B,h ∈ T
where Cem

b,h is the non-negative emission cost

for a given b ∈ B and h ∈ T , and δemh is

the carbon intensity at step h. Additional

constraints are imposed on the energy pro-

duced/demanded by the batteries and on the

SoC at each time set. These constraints are

given by:

0 ≤ cb,h ≤ cmax
b ∀b ∈ B,h ∈ T

0 ≤ db,h ≤ dmax
b ∀b ∈ B,h ∈ T

SoCh,b = SoCh−1,b +
(
ζbcb,h −

1

ζb
db,h

)
∀b ∈ B,h ∈ T \ {1}

0 ≤ SoCh,b ≤ qb ∀b ∈ B,h ∈ T

where cmax
b and dmax

b are charging and

discharging maximum energy for batteries,

SoC1,b is the initial state-of-charge, qb is the

capacity of the battery, and ζb is the battery

efficiency. In our linear formulation, the ef-

ficiency ζb is an upper bound to the one em-

ployed by the CityLearn environment. There-

fore, our solutions are lower bounds to the

optima achievable in the challenge.

4.4. The rule-based deep RL agents

In this work, we adopt the popular PPO

actor-critic method proposed by Schulman

et al. (2017) and extend it with safe action

masks by adopting the MaskablePPO algo-

rithms recently introduced by Huang and

Ontañón (2022). During all the phases of the

analysis, we used Stable-Baselines3 package to

train the agents, and always apply a learning

rate α = 0.001, a discount factor γ = 0.99, and
a truncate the episode at 4000 steps (hours).

4.4.1. Maskable PPO

Three constraint functions, that avoid unwar-

ranted battery actions, are defined as follows:

Mask-1: ab ∈ [−SoCb,1− SoCb] ⊂ Ab;

Mask-2: ab ∈ [0,1 − SoCb] if Eb ≤ 0 else ab ∈
[−SoCb,0];
Mask-3: ab ∈ [pb,h ±ε] for h = 1, ...,24, where ε
defines a half-width interval around pb,h.
Mask-1 is based on the battery SoC, Mask-

2 combines SoC and energy demand, whilst

Mask-3 constraints the exploration in the

proximity of the optimized μ-daily policy. We

expect Mask-3 to inherit good performance

of the μ-daily, but also be more robust and

generalize better to new scenarios.

4.4.2. Maskable PPO with predictor

In addition to the three mask functions de-

fined in the previous section, we attempt to

further enhance the agent performance by

combining them with the energy predictor

introduced in section 4.1. In our approach,

energy demand predictions for the next 10

hours,
(
Êh+1, ..., Êh+10

)
, are combined with a

subset of 28 factors from o, for a total of 78

observations.

5. Results and discussions

The data set of the NeurIPS 2022 CityLearn

Challenge is used to train the predictor, see

section 4.1, to optimize the three RBCs, 4.2,

the Oracle-driven MPC, 4.3, and to train the

RL agents introduced in section 4.4.

5.1. Comparison of the control policies

Table 1 shows the results for the optimized

RBC and RL agents and the Opracle-driven

MPC and compares the action spaces, op-

timizers, cost reduction m1, emission re-

duction m2, load shaping reward and other

KPIs. For comparison sake, we also show

the scores of a reference policy without bat-

teries (NoST), a random policy (Rnd), and

two expert-based charge-at-night (CaN) and

discharge-at-night (DaN) controllers.

Random and experience-based agents per-

form very poorly, even worse than a case

without batteries in terms of costs m1 > 1,

emissions m2 > 1, grid-related ramping and

load factors m3 > 1. This result supports the
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Fig. 1. Flattening of the emissions, costs, and energy consumption profiles achieved by the Maskable PPO agents
equipped with the load predictor (blue dashed lines) versus the original case without batteries (the no-storage case in
red). Also, around step 4150, note the relatively low performance due to consecutive days with a low PV production.

Table 1. Summary of the control policies including, names, state space (discrete or box continuous), learning

model, and resulting key performance indicators, e.g., μRsh
= E[

∑
b r

sh
h,b] and μRtot

= E[rh]. The RL agents
combined with the neural predictor use a 10h-ahead net load predictor and a subset of shared and private
observations. The optimized p for Predict and Persist are (−0.120,−0.155) and (−0.107,−0.142), respectively.

Name Type Optimizer Ab m1 m2 m3 μRsh
μRtot

∑
i mi
3

NoST Baseline - Dis(1) 1.0 1.0 1.0 0 -1.530 1.0
Rnd Random - Box(-1,1) 1.34 1.93 2.57 -2.206 -5.086 1.95
CaN RBC Expert-based Dis(2) 1.069 1.179 1.075 -0.190 -1.894 1.107
DaN RBC Expert-based Dis(2) 1.135 1.058 1.068 -0.079 -1.793 1.087
Persist RBC Annealing Dis(2) 0.788 0.854 0.992 0.1304 -1.148 0.878
Predict RBC Annealing Dis(2) 0.804 0.888 0.981 0.1093 -1.216 0.891
μ-daily RBC Annealing Dis(24) 0.695 0.976 0.947 0.0102 -1.369 0.873
PPO RL PPO Box(-1,1) 1.001 1.001 1.001 -0.0 -1.53 1.001
Mask-1 RL MaskPPO Dis(51) 0.753 0.918 0.983 0.041 -1.229 0.885
Mask-2 RL MaskPPO Dis(51) 0.780 0.924 0.970 0.0324 -1.235 0.891
Mask-3 RL MaskPPO Dis(51) 0.736 0.921 0.976 0.0903 -1.233 0.877
PPO-pred RL PPO Box(-1,1) 0.930 1.005 0.975 0.019 -1.510 0.970
Mask-1-pred RL MaskPPO Dis(51) 0.705 0.866 0.912 0.142 -0.846 0.828
Mask-2-pred RL MaskPPO Dis(51) 0.720 0.870 0.931 0.134 -0.870 0.841
Mask-3-pred RL MaskPPO Dis(51) 0.694 0.874 0.927 0.128 -0.843 0.832
Oracle-Cost MPC Linear Prog Box(-1,1) 0.542 0.752 0.979 - - 0.758
Oracle-Emis MPC Linear Prog Box(-1,1) 0.625 0.695 1.137 - - 0.819

need for optimized battery control strategies.

In the last two rows of 1, we present the re-

sults of the Oracle-driven MPC, which define

a lower bound on m1 ≥ 0.542 (Oracle-Cost)

and a lower bound on m2 ≥ 0.695 (Oracle-

Emis). These are the best achievable costs and

emissions in the challenge and will provide a

useful reference for future comparisons.

Our optimized RBC and RL agents achieved

an overall good performance, with better

KPIs compared to the NoST baseline. The

optimized Predict and Persist agents perform

well, especially the latter that has the highest

load shaping reward (0.13) and lowest emis-
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sions (0.854) among the other optimized.

On the other hand, the μ-daily policy ag-

gressively tries to minimize electricity costs

but with a substantially lower performance

in terms of load-shaping reward (0.01) and

emission score (0.976). Nevertheless, thanks

to an electricity bill reduction of more than

30 % (0.695), the μ-daily agent achieves the

highest mean score (0.873) among the three

optimized RBCs.

The RL agents without predictor performed

quite well compared to the baseline, however,

their performance is slightly worse than the

optimized RBCs, with similar meanmi scores

but for lower load-shaping reward (0.04-

0.09). This was probably due to the early

truncation of the learning due to computa-

tional time constraints. Interestingly, a sim-

ple PPO agent very often converged to a bad

sub-optimal policy equivalent to a case with-

out batteries case. These RL agents, when

equipped with a predictor, led to the best

control performances. For instance, Masl-1-

pred achieve the highest load-shaping re-

ward (0.142), lowest grid cost (m3) and lowest

average KPI score (0.828). It is also interest-

ing to look at the results of the Mask-3-pred

agent, which constrains the policy search in-

formed by the μ-daily. Mask-3-pred inherited

the same good cost reduction score (0.694)

for the rule-based policy, however, it also per-

forms much better in all the other metrics,

hence providing a more robust control com-

pared to the deterministic RBC.

5.2. Generalization and seasonality
effects

The generalization ability of the three

MaskPPO agents equipped with the load

predictor is compared based on their abil-

ity to predict out-of samples data from un-

seen seasons. A validation set is defined with

data from half of January until July, i.e., for

h >4000 and relative rolling variance reduc-

tion, 1−Varπ� (ENS )/V arπ0
(ENS ), is presented

and discussed. Note a significant reduction

in the rolling variance throughout the year,

Aug   Sep   Oct   Nov   Dec    Jan    Feb   Mar    Apr   May   Jun    Jul

Fig. 2. Reduction of the weekly variability of the non-
shiftable energy demand (district level) achieved by
the three Maskable PPO agents equipped with the load
predictor.

which indicates good generalization of the RL

agents. A higher reduction is observed during

spring, autumn, and summer (50-80 %) and

lower during winter (30-60 %). This season-

ality trend was expected due to the lower

PV production in winter. Nonetheless, during

sunny days in winter, the variance can reduce

up to high as 80 %. The three agents perform

very similarly during different seasons, with

a slightly better performance of the MPPO3

during March and April and a better perfor-

mance of the MPPO1 during winter (Novem-

ber to February)

6. Conclusion and future directions

This paper proposed RBC and RL agents for

optimizing electric batteries in net-zero en-

ergy communities. Tested on the CityLearn

simulator (NeurIPS-2022), the results show

that improper use of storage units can lead

to higher costs and emissions possibly dam-

aging the community. An oracle-driven MPC

defines the lowest cost (0.542) and emis-

sion reduction (0.695) achievable ad the RL

agents perform closest to the global opti-

mum. TheMaskPPO combining actionmasks

and a neural forecaster reduces electricity

costs by 30% (0.694) and emissions by 12.6%

(0.874). They also improve grid stability and

load profile shape. Future research aims to

test the controllers on more complex en-

ergy communities and explore centralized
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and multi-agent RL with model-predictive

controllers and probabilistic load forecasters.

Lower KPIs may be achieved with higher-

resolution sampling, e.g., a 1-minute fre-

quency, and by applyingmulti-agent RL tech-

niques. This will be part of future extensions.
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