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Learning dynamics of spring-mass models with physics-informed graph neural net-
works
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We propose a physics-informed message-passing graph neural network (GNN) for learning the dynamics of spring-
mass systems. The proposed method embeds the underlying physics directly into the message-passing scheme of the
GNN. We compare the new scheme with conventional message passing and demonstrate the generalization capability
of the method. Additionally, we infer the learned parameters of the edges and show that these parameters serve as
explainable metrics for the learned physics. The numerical results indicate that the proposed method accurately
learns the physics of the spring-mass systems.
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1. Introduction

Previous research has shown that GNNs can ef-
ficiently predict pairwise interactive dynamics
between discrete masses when represented as
graphs Battaglia and et. al. [2018] Pfaff and et al.
[2021]. This is due to the inductive bias of GNNs,
which models pairwise interactions as messages
passed between the edges of the graph. Recently,
a new type of GNNs called E(n) - Equivariant
Graph Neural Networks - have been proposed
Satorras and et al. [2021]. The goal of these
networks is to enhance the inductive bias by
preserving the rotation and translation symme-
tries in Euclidean space. These networks oper-
ate on Euclidean graphs where nodes and edges
are assigned positions and relative distance vec-
tors, respectively, in addition to their correspond-
ing features. Building upon the aforementioned
research, our study presents a novel message-
passing scheme that integrates physical inductive
biases to simulate the dynamics of spring-mass
systems. Similar to the prior work, our method
operates on graphs defined in Euclidean space.

2. Physics-informed GNN

We propose a GNN framework for spring-mass
systems, where learned edge messages operate on
embeddings of connected nodes.

2.1. Physics-informed message passing

Our message passing is based on the following in-
gredients. (1) Edge message mij is constructed as
mij = φe(||�xij ||2), where φe is a learned function
and �xij = �xi − �xj is the edge vector. Our for-
mulation results in mij = mji. We consider mij

to be a hidden representation of the magnitude of
the spring force. (2) At each node incoming edge
vectors are weighted and summed to estimate a
latent internal force on nodes, where weights are
determined by φw with mij as inputs i.e. �f l

i =

Σin�xijφw(mij). This formulation ensures that the
force from node i to j is equal and opposite to
that from j to i. Then, two functions φn→s and
φn→v transform the node embeddings to a scalar
α and a vector �f l

ext, respectively. Next, the latent
node acceleration is calculated as �̈xl = α�f l

i+
�f l
ext.
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(a) Average MAE in acceleration for 500 steps (b) MAE displacement for 500 time-step rollout (aver-
aged over all the nodes)

Fig. 1.: Comparison with baseline GNN

(3) The updated edge vector �xupd
ij is calculated by

adding the parallel and orthogonal projections of
�̈xl onto �xij . Next, the edge message is updated as
mupd

ij = φupd(||�xupd
ij ||,mij). (4) Finally all the

latent node accelerations are aggregated after n

message passing steps to predict the acceleration
on the node.

2.2. Inference of edge parameters

Edge parameters are inferred by calculating the
eigenvalues of the Jacobian matrix of node accel-
eration �̈xi with respect to the edge vector �xij . For
a spring with stiffness Kij and rest length �0ij , the
eigenvalues are given by:
eig1 =

Kij(||�xij ||−�0ij)

||�xij || and eig2 = Kij .

3. Results

To evaluate our method, we predict the trajectory
roll-out of various configurations of 1kg masses
connected by springs with 50N/m stiffness and
4m rest length. The GNN model proposed in Pfaff
and et al. [2021] is used as baseline. Our model
is trained on simulated 1000 time-step noisy tra-
jectories of configurations with 4, 5, 6 and 8
masses. The performance of trained model was
evaluated on the configurations of 7, 9 and 12
masses. Notably, the latter two configurations rep-
resent extrapolation scenarios beyond the training
data. Our model achieves excellent performance
in predicting the dynamics of the spring-mass sys-
tems, as well as inferring the underlying physics.
The proposed method generates stable roll-outs,
as shown in Figure 1 and Table 1. Table 2 shows

the inferred K and l0 parameters for each edge in
a configuration of 9 masses at the 100th and 250th

steps.

Table 1.: Avg MAE acceleration 0-500

mean ± std. baseline proposed
m:12 �0:4 K:50 1.286 ± 0.207 0.125 ± 0.096
m:3 �0:4 K:50 1.193 ± 0.637 0.057 ± 0.037
m:7 �0:4 K:50 1.445 ± 0.272 0.146 ± 0.124
m:9 �0:4 K:50 1.590 ± 0.222 0.137 ± 0.111

Table 2.: Inferred spring stiffness and rest length for 9-
mass configuration

Edge
Mean ± Std.dev.

step = 100 step = 250
K �0 K �0

0→1 48.64 ± 0.74 4 ± 0 50.32 ± 0.60 4.4 ± 0.01
2→1 48.52 ± 0.62 4 ± 0.01 49.90 ± 0.54 4.2 ± 0
1→2 50.14 ± 2.35 4 ± 0 49.81 ± 0.40 4.1 ± 0
3→2 48.46 ± 0.69 4 ± 0 48.76 ± 0.98 4 ± 0.01
2→3 50.22 ± 2.41 4 ± 0 48.71 ± 0.96 4 ± 0.01
4→3 50.16 ± 2.31 4 ± 0 49.72 ± 0.33 4.1 ± 0.01
3→4 48.4 ± 0.64 4 ± 0.01 49.84 ± 0.42 4.2 ± 0
5→4 48.41 ± 0.67 4 ± 0.01 49.84 ± 0.44 4.2 ± 0
4→5 50.13 ± 2.35 4 ± 0 49.7 ± 0.41 4.1 ± 0
6→5 48.46 ± 0.69 4 ± 0 48.69 ± 0.96 4 ± 0.01
5→6 50.17 ± 2.32 4 ± 0 48.78 ± 0.98 4 ± 0.01
7→6 50.21 ± 2.40 4 ± 0 49.82 ± 0.34 4.1± 0.01
6→7 48.52 ± 0.60 4 ± 0.01 49.9 ± 0.53 4.2 ± 0
8→7 48.57 ± 0.71 4 ± 0.01 50.26 ± 0.50 4.4 ± 0.01
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