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Accurate regional risk analysis requires representative mathematical models of infrastructure. One of the main
challenges in developing mathematical models of infrastructure is defining their modeling granularity, i.e., the
level of detail in the topology of the model. Different modeling granularities affect our ability to capture the
spatial variability of the impact arising from the changes in the capacities of infrastructure and service demands.
A recent trend in infrastructure modeling is to develop detailed digital twins to mimic all aspects of the real
infrastructure. However, detailed digital twins might require data not readily available, and their analyses often
have prohibitive computational costs, making digital twins not always the most suitable option to model the
performance of infrastructure. The goal of selecting the optimal modeling granularity is to allocate computational
resources to the model that best delivers the desired information with the desired accuracy level. This paper presents
a mathematical formulation to systematically select the appropriate modeling granularity of infrastructure. The
formulation adaptively increases the granularity starting from a low-granularity infrastructure model until we reach
the desired tradeoff among accuracy, simplicity, and computational efficiency. To define the tradeoff, we introduce
metrics that measure the level of agreement between estimates of the quantities of interest computed using different
levels of granularity. Such metrics include global measures that assess if a model is insufficiently detailed to capture
the quantities of interest and local measures that identify specific regions of the model that may require further
refinement. As an example, we apply the illustrated formulation to select the granularity of the potable water
infrastructure model in Seaside, Oregon, to quantify its performance following a seismic event.
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1. Introduction

Decision-making is often based on information

about risks associated with possible courses of

action or possible outcomes (Gardoni and Murphy

2014). Regional risk analysis requires defining

all consequences relevant to the decision-making

process and quantifying their probabilities (Gar-

doni et al. 2016). One of the first steps in regional

risk analysis is developing representative math-

ematical models of infrastructure, i.e., a virtual

representation of infrastructure for the intended

analyses. One of the main challenges in devel-

oping a virtual representation of infrastructure is

selecting the modeling resolution from multiple

candidates for required analyses, each candidate

having different computational costs, accuracy,

and possibly the ability to provide information.

Past research (e.g., Guidotti et al. 2019; Sharma

et al. 2021) has shown the importance of selecting

the proper modeling resolution of infrastructure

to adequately capture the impact of damaging

events. Sharma et al. (2021) defined three types

of resolution of infrastructure: the temporal, hi-

erarchical, and spatial resolution. The temporal

resolution refers to how often the model estimates

the performance of infrastructure over time, while

the hierarchical resolution determines the level of

detail used to model infrastructure components.

The spatial resolution, i.e., themodeling granular-

ity, determines the level of detail in the topology

of the model.

The selection of the temporal resolution should
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be based on the frequency of changes in the in-

frastructure performance, such as hourly changes

in water infrastructure performance. The hierar-

chical resolution should reflect the scope of the

infrastructure performance assessment, such as

the need for higher resolution in optimization

problems targeted at minimizing the impact of

damaging events on infrastructure performances

by adopting mitigation and adaptation strategies.

Finally, the spatial resolution (modeling granular-

ity) should consider the scope of the infrastructure

performance assessment, variability of hazard im-

pact, and computational cost.

Infrastructure modeling has recently seen a shift

towards using detailed digital twins that mimic

all aspects of the infrastructure (e.g., Shirowzhan

et al. 2020). However, the high computational

costs and excessive level of detail often make dig-

ital twins unsuitable for modeling infrastructure

performance. On the other hand, past research

(e.g., Tomar and Burton 2021) defined simplified

infrastructure models at an arbitrary granularity

level without properly considering the appropri-

ateness of the modeling granularity for the in-

tended analyses. To ensure that computational re-

sources are allocated optimally, the selection of

modeling granularity should aim to provide the

desired information at the desired accuracy level.

This paper illustrates a mathematical formula-

tion to select the appropriate modeling granularity

of infrastructure. First, we discuss a formulation to

define equivalent simplified infrastructure models

at different levels of granularity. Next, we for-

mulate the selection of the appropriate modeling

granularity as an iterative process. Starting from

a coarser granularity, we obtain equivalent simpli-

fied infrastructure models at increasingly refined

levels of granularity and estimate the quantities of

interest using the simplified infrastructure mod-

els. We refine the modeling granularity until we

achieve an acceptable balance between accuracy,

simplicity, and computational efficiency. To assess

the level of accuracy, we introduce metrics that

measure the level of agreement between estimates

of the quantities of interest computed using dif-

ferent levels of granularity. Such metrics include

global measures that assess if a model is insuffi-

ciently detailed to capture the quantities of interest

and local measures that identify specific regions of

the model that may require further refinement. As

an example, we apply the illustrated formulation

to select the granularity of the potable water in-

frastructure model in Seaside, Oregon, to quantify

its performance following a seismic event.

2. Modeling the time-varying
performance of infrastructure

For completeness, this section briefly reviews the

mathematical formulation for modeling the time-

varying performance of infrastructure using graph

theory. Following Sharma and Gardoni (2022), we

model infrastructure as a collection of networks,

each representing a specific function of the infras-

tructure (e.g., a network can describe the connec-

tivity and physical damage of the infrastructure,

and a flow network can describe its functionality).

The collection of all networks is written as G =

{G[k] = (V
[k]
, E[k]) : k = 1, . . . ,K}, where

superscript [k] denotes the function captured by

the kth network. The state of each network is char-

acterized by a unique set of (i) capacity measures

C[k] (t), e.g., Gardoni et al. (2002); (ii) demand

measures D[k] (t), e.g., Gardoni et al. (2003);

and (iii) supply measures S[k] (t), e.g., Sharma

and Gardoni (2022). In general, network measures

are a function of dynamic state variables x[k](t),

where the temporal dependence accounts for de-

terioration/aging processes (e.g., Jia and Gardoni

2018) and recovery activities (e.g., Sharma et al.

2020). Using the triplet [C[k](t),D[k](t),S[k](t)],

we derive the general expression for the perfor-

mance measures of the components of G[k] as

Q[k](t) = Q[k][C[k](t),D[k](t),S[k](t)].

In addition, we model the interdependencies

within and among infrastructure using network

interfaces as proposed in Sharma and Gardoni

(2022). An interface is defined as a bound-

ary where networks interact. Therefore, interde-

pendencies among networks can only exist at

the interfaces. Following Sharma and Gardoni

(2022), we can use interface functions to obtain

the modified capacity, demand, and supply es-

timates [C′[k](t),D′[k](t),S′[k](t)]. We can then
obtain the modified derived performanceQ′[k](t).
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Next, we define an aggregate measure of the net-

work performance Q(t) derived from the com-

ponent performances Q′[k](t). The modeled in-
frastructure and the type of analysis typically

shape the definition of Q(t). For example, in

the case of transportation infrastructure, we can

estimate Q(t) from topology-based approaches

(e.g., Nocera et al. 2019), whereas in the case

of potable water infrastructure, we can estimate

Q(t) from flow-based approaches (e.g., Iannacone

et al. 2022). Next, we divide the region of interest

into na service areas and obtain Q(t) by mapping

Q′[k](t) → Q
[k]
a (t), ∀a ∈ (1, . . . , na). Lastly,

we aggregate the Q
[k]
a (t)’s into a scalar Q(t) =∑na

a=1[waQ
[k]
a (t)], where wa denotes the weight

for each area a.

Once we obtain Q(t), we use descriptors, i.e.,

�[Q(t)], that succinctly characterize the conse-

quences (i.e., effects or impacts) of damaging

events on the infrastructure. Examples of�[Q(t)]

include resilience metrics, or the percentage of the

population impacted by the water pressure below a

specified value. Likewise, if the time-varying per-

formance of infrastructure is of interest �[Q(t)]

can be defined as Q(t) itself.

3. Formulation to define equivalent
simplified networks

This section presents the mathematical formula-

tion to define equivalent simplified networks at

different levels of granularity, building upon the

mathematical formulation for modeling the time-

varying infrastructure performance presented in

Section 2. Defining equivalent simplified net-

works encompasses defining (i) the nodes of the

equivalent network; (ii) the edges of the equiva-

lent network; and (iii) equivalent state variables,

capacity, and demand measures.

The definition of the nodes of equivalent net-

works (i.e., V
[k]
eq ) is based on the topology of an

initial detailed network (i.e., G[k]). Starting from

G[k], we rank the nodes V [k] based on a nodal

measure of importance. Then, we define the nodes

V
[k]
eq (of the equivalent networkG

[k]
eq ) as the subset

of nodes (of G[k]) whose measure of importance

is greater than a selected threshold. Mathemati-

cally, we write the nodal measure of importance

H(v
[k]
i ), ∀v[k]i ∈ V [k] as

H
(
v
[k]
i

)
= h

(
v
[k]
i

)
+ 1{

v
[k]
i ∈V

[k]
d

}M (1)

where h(v
[k]
i ) is the baseline importance of a

node v
[k]
i ∈ V [k]; 1{v[k]

i ∈V
[k]
d } is an indicator

function equal to 1 if v
[k]
i ∈ V

[k]
d , and 0 other-

wise; and M is a number large enough, which

can be defined, for example, as the maximum

value among h(v
[k]
i ), ∀v[k]i ∈ V [k]. In Equation

(1), h(v
[k]
i ) is defined as a node centrality mea-

sure, like diameter (Latora and Marchiori 2001),

betweenness (Freeman 1977), or PageRank (Brin

and Page 1998). Also, V
[k]
d is the subset of nodes

v
[k]
i ∈ V [k] having a relevant role when assessing

the performance of the modeled infrastructure.

For example, considering a water network, nodes

representing water tanks or reservoirs belong to

V
[k]
d because these network components are es-

sential for modeling purposes. Once we quantify

H(v
[k]
i ), we define an importance threshold, εeq,

to select the nodes in V
[k]
eq , such that V

[k]
eq :=

{v[k]i ∈ V [k]|H(v
[k]
i ) ≥ εeq}. Furthermore, a

single value of εeq would imply a homogeneous

granularity of G
[k]
eq However, the formulation also

allows defining εeq as a vector to obtain a hetero-

geneous granularity by assigning each component

of εeq to different regions within the footprint of

the infrastructure. For instance, we can define a

higher level of granularity within the region of

interest, whereas we can have a lower modeling

granularity outside the region of interest.

Next, we define the edges of G
[k]
eq by exploring

the paths having as origin and destination the

nodes in V
[k]
eq . Then, we add an edge to the set

of edges of the equivalent network E
[k]
eq when a

path does not require passing through multiple

nodes in V
[k]
eq . Lastly, we verify that the number

of incoming/outgoing edges from a node in G
[k]
eq

does not exceed the number of incoming/outgoing

edges in G[k]. Otherwise, we remove the least im-

portant newly added edges. The selection of which

outgoing edges from v
[k]
i need to be removed is

also based on a centrality measure (of the edges)

in G
[k]
eq . However, if removing the least important

edge results in a disconnected network, we add
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the removed edge and remove the second to last

important edge. If removing the second to last

important edge results in a disconnected network,

we keep adding the removed edge and remove an

edge with less importance.

Once we obtain the topology of G
[k]
eq =

(V
[k]
eq , E

[k]
eq ), we define a mapping to appropri-

ately approximate G[k] and obtain an equivalent

G
[k]
eq . The equivalency depends on the modeled

infrastructure, type of analysis, and the selected

�[Q(t)]. The mapping translates state variables,

capacity, and demand from G[k] into G
[k]
eq . For

instance, in the case of hydraulic flow analysis for

the water infrastructure, reducing V [k] into V
[k]
eq

requires assigning the water service demand to

V
[k]
eq . For this case, we assign the water demand

of v
[k]
i ∈ V [k] to the nearest v

[k]
i ∈ V

[k]
eq .

4. Formulation to select the modeling
granularity of infrastructure

This section presents the mathematical formula-

tion to select the appropriate modeling granularity.

In the following subsections, first, we explain the

use of an equivalent network for modeling the

time-varying performance of infrastructure. Then,

we explain the iterative formulation to select the

appropriate modeling granularity. Finally, we in-

troduce the metrics that facilitate the decision on

the level of modeling granularity.

4.1. Modeling the infrastructure
performance using equivalent
simplified networks

Once we obtain an equivalent G
[k]
eq , we quan-

tify S′[k](t, εeq) and Q′[k](t, εeq) as discussed
in Section 2. Also, we map Q′[k](t, εeq) →
Q

[k]
a (t, εeq), ∀a ∈ [1, . . . , na(εeq)], and we ag-

gregate theQ
[k]
a (t, εeq)’s into a scalarQ(t, εeq) =∑na(εeq)

a=1 [wa(εeq)Q
[k]
a (t, εeq)], where wa(εeq) is

the weight for each a for a given level of gran-

ularity. The estimated Q(t, εeq) (and the result-

ing �[Q(t, εeq)]) are a function of εeq because

the ability to capture the spatial variability of

S′[k](t, εeq) depend on the modeling granularity.

4.2. Iterative formulation to select the
granularity of networks

We formulate the selection of the modeling gran-

ularity as an iterative process. First, we obtain

samples of �[Q(t, εeq)], which can be used to

estimate a measure of the error when searching

the appropriate granularity of G[k]. The estimate

of �[Q(t, εeq)] can be computed either using

G[k] (denoted as �[Q(t, ε+eq)]) or an initial low-

granularity G
[k]
eq (i.e., �[Q(t, ε−eq,0)]) and then

incrementally higher granularity networks (i.e.,

�[Q(t, ε−eq,u)]), where subscript u denotes the u
th

iteration in the search of the appropriate granular-

ity of G[k].

After we estimate �[Q(t, ε+eq)]

(or �[Q(t, ε−eq,0)]), the search of the appropriate
granularity of G[k] begins from a lower level of

granularity by choosing an initial value of εeq
(e.g., selected based on a predetermined value of

the cardinality of V
[k]
eq .) For instance, εeq could

be selected so that |V [k]
eq | = �α1|V [k]|�, where

α1 ∈ (0, 1). Next, we iteratively refine the model

granularity until we achieve the desired tradeoff

among accuracy, simplicity, and computational ef-

ficiency. At each iteration, we increase the model

granularity by updating the cardinality of V
[k]
eq ,

i.e., by updating the value of αu at the u + 1

iteration.

4.3. Global and local metrics to estimate
the accuracy of networks at different
levels of granularity

In this section, we introduce the metrics that mea-

sure the accuracy of �[Q(t, εeq)] and facilitate

the decision on the refinement of the granularity

of G
[k]
eq . Such metrics include global measures

that assess if G
[k]
eq is insufficiently detailed to cap-

ture �[Q(t, εeq)] and local measures that identify

specific regions of G
[k]
eq that may require further

refinement.

4.3.1. Global metrics

Let us consider�[Q(t, ε−eq)] and�[Q(t, ε+eq)] as a

general time-invariant �[Q(t, εeq)] estimated us-

ing two levels of granularity, where �[Q(t, ε−eq)]
is obtained using a lower granularity of G[k].
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Then, letD be defined as

D =
(
I −I

) ·
(� [

Q
(
t, ε+eq

)]
� [

Q
(
t, ε−eq

)]
)

(2)

where D is the difference between �[Q(t, ε+eq)]

and �[Q(t, ε−eq)]; (I −I) is the matrix composed

of the two submatrices I and −I; and I is the

identity matrix of size equal to the number of

components in �[Q(t, εeq)]. Similarly, letM be

defined as

M =
1

2

(
I I

) ·
(� [

Q
(
t, ε+eq

)]
� [

Q
(
t, ε−eq

)]
)

(3)

where M is the average between �[Q(t, ε+eq)]

and �[Q(t, ε−eq)]. In the case of time-invariant
�[Q(t, εeq)], we combine the information from

μD, i.e., the mean vector of D in Equation (2),

and ‖diag(ΣDM)‖, i.e., the Euclidean norm of

the diagonal matrix of the cross-covariance matrix

ΣDM = E[(D − μD)(M − μM)T]. In the

case the granularity ofG
[k]
eq is sufficiently detailed,

then μD → 0 and ‖diag(ΣDM)‖ → 0. We

write the global Network-Resolution-Root-Mean-

Square-Error,GN, as

GN =

√
(μD)

2
+ ‖diag (ΣDM)‖ (4)

It follows that GN → 0 as the granularity of

G
[k]
eq becomes appropriate to capture the changes

in �[Q(t, εeq)].

Similarly, in the case of a time-varying

�[Q(t, εeq)], we define Dt with mean μDt

and covariance matrix ΣDtDt
in a similar

fashion as D in Equation (2). Likewise, we

also define the Mt with mean μMt
and

covariance matrix ΣMtMt . As in the time-

invariant case, if G
[k]
eq is sufficiently detailed

to capture the changes in �[Q(t, εeq)], then∑τ
t=1 μDt

→ 0 (where τ is the time-span of

the performance assessment of infrastructure) and∑τ
t=1 ‖diag(ΣDtMt)‖ → 0. In the case of time-

varying�[Q(t, εeq)], we combine the information

from μDt and ‖diag(ΣDtMt)‖ to assess the accu-
racy of G

[k]
eq at different levels of granularity. We

write the temporal global Network-Resolution-

Root-Mean-Square-Error, TGN as

TGN =

√√√√ τ∑
t=1

[
(μDt)

2
+ ‖diag (ΣDtMt)‖

]

(5)

4.3.2. Local metrics

The use of only global metrics to estimate the

accuracy of networks at different levels of gran-

ularity does not guarantee the selection of the

appropriate model granularity because of the lo-

cal spatial variability in �[Q(t, εeq)]. Similarly,

global metrics alone would not suffice if decision-

makers desire increased granularity in selected

spatial portions of the network. We also intro-

duce local metrics to estimate the accuracy of

networks at different levels of granularity. The use

of local metrics allows controlling the accuracy

of networks at different levels of granularity at

the service area level. The principle behind the

local metrics of accuracy is the same as the one

illustrated for GN and TGN. However, because

multiple nodes in G[k] correspond to the same

node in G
[k]
eq , we define the local metrics of ac-

curacy at the level of the service area by defining

the quantitiesDa andMa, ∀a ∈ [1, . . . , na(ε
+
eq)]

in a similar fashion as D and M in Equations

(2) and (3). Using the defined quantities Da

and Ma, we then estimate the local Network-

Resolution-Root-Mean-Square-Error,LN and the

local temporal Network-Resolution-Root-Mean-

Square-Error, TLN that can be written like GN

and TGN in Equations (4) and (5).

5. Selecting the modeling granularity of
an example water infrastructure

This section illustrates the mathematical formu-

lation to select the network granularity for mod-

eling the water infrastructure in Seaside, Oregon.

We use a set of 100 hypothetical earthquake sce-

narios originating from the Cascadia Subduction

Zone. Then, for each earthquake scenario, we

use Ground Motion Prediction Equations (Boore

and Atkinson 2008) to obtain values of the Peak

Ground Acceleration (PGA) and Peak Ground

Velocity (PGV ) at the location of the vulnera-

ble components of the water infrastructure (i.e.,
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pumping stations, tanks, and pipelines). We model

the water infrastructure as a collection of two net-

works, i.e., the structural networkG[1] (describing

the connectivity and the physical damage to the

water infrastructure) and the flow network G[2]

(describing the functionality in terms of transmis-

sion of water.) Following the mathematical for-

mulation presented in Section 2, G[1] has state

variables x[1](t) that include material and geo-

metric properties of pipelines, water tanks, and

water pumps. Also, G[1] has structural capacity

C[1](t), and demand D[1](t), where the elements

of C[1](t) and D[1](t) are the capacity and de-

mand models associate with the network compo-

nents. We define the supply S[1](t) as S[1](t) =

D[1](t) 	 1{D[1](t)�C[1](t)}, where 	 is the ele-

mentwise product of the elements of D[1](t) and

1{D[1](t)�C[1](t)}, 1{D[1](t)�C[1](t)} is an indicator
function equal to 1 when D[1](t) 
 C[1](t), and

0 otherwise, and 
 is the elementwise inequality.
Next, we write Q[1](t) as the instantaneous reli-

ability of each of the components (Sharma et al.

2021). Similarly, the water flow network G[2] has

state variables x[2](t) that include flow pressure,

the length and diameter of the pipelines, their

roughness coefficient, as well as pump curves,

and tank characteristics. Also, G[2] has capacity

C[2](t), and demand D[2](t), where the elements

of C[2](t) and D[2](t) are defined in terms of

the volumetric water flow. In the case of G[2],

we define the supply S[2](t) as the solution of

a pressure-driven hydraulic flow-based analysis

(obtained using the Python package WNTR (Klise

et al. 2017)). Next, we write Q[2](t) as Q[2](t) =

[S[2](t) � D[2](t)] 	 1{D[2](t)�0}, in which � is

the elementwise division and � is the element-

wise comparison operator. We obtain the overall

performance measure Q(t) by dividing the region

into na areas. Lastly, we use �[Q(t)] = Q(t0+)

where t0+ is the time in the immediate aftermath

of the earthquake. The selected�[Q(t)] quantifies

the direct impact of the hazard on the ability of the

infrastructure to fulfill the water service demand.

Next, we define equivalent simplified networks

at different levels of granularity. We use the

PageRank centrality as h(v
[2]
i ), measuring the

likelihood of passing through a node in a random

walk over G[2]. Then, V
[2]
d includes the nodes

representing reservoirs, water tanks, and water

pumps. Using M = 4.81 × 10−4, we compute

H(v
[2]
i ) in Equation (1). We obtain the topology of

G
[2]
eq with the lowest level of granularity using the

value of εeq corresponding to |V [2]
eq | = �α1|V [2]|�,

where α1 = 0.10. Once we obtain the topology

of G
[2]
eq , we estimate the equivalent x[2](t). Fol-

lowing Walski et al. (2003), we obtain equivalent

length, diameter, and roughness coefficient for

the pipelines in G
[2]
eq . Similarly, we aggregate the

nodal values of the water service demand from

v
[2]
i ∈ V [2] to the nearest (equivalent) v

[2]
i ∈ V

[2]
eq ,

∀v[2]i ∈ V [2].

Then, for every earthquake scenario, we es-

timate Q(t0+ , εeq) by translating the physical

damage into the changes in C[2](t, εeq) and

D[2](t, εeq) to estimate S
[2](t, εeq) (details in Ian-

nacone et al. 2022).

Next, we quantify the changes in Q(t0+ , εeq)

when εeq correspond to |V [2]
eq | = �α2|V [2]|�,

where α2 = 2α1. After quantifying Q(t0+ , εeq)

with G
[2]
eq corresponding to the values of α1 and

α2, we obtain the value of α3 as α3 = α2 + λ1 ·
E[∂Ξ(α)/∂α], where λ1 = 4.24, and Ξ(α) is the

measure of the error. We estimate E[∂Ξ(α)/∂α]

as

E

[
∂Ξ(α)

∂α

]
=
E
[
Q (t0+ , εeq,u+1)−Q

(
t0+ , ε

+
eq

)]
αu+1 − αu

− E
[
Q (t0+ , εeq,u)−Q

(
t0+ , ε

+
eq

)]
αu+1 − αu

(6)

The value of λ1 is selected as 1/10 of the value

of λ1 that would result in |V [2]
eq | = |V [2]| in one

step. Based on λ1 and E[∂Ξ(α)/∂α], we obtain

the value of α3 = 0.29. At each iteration, we

update the value of λu as 1/10 of the maximum

value of λu at the uth iteration. We estimate

D = Q(t0+ , ε
+
eq) − Q(t0+ , εeq,u) and M =

[Q(t0+ , ε
+
eq) + Q(t0+ , εeq,u)]/2 using Equations

(2) and (3), and the value of GN using Equa-

tion (4). At the first iteration, GN = 0.05. For

illustration purposes, we assume the desired level

of accuracy corresponds to GN = 0.02, and we

repeat this process until the value of GN ≤ 0.02.

Figure 1 shows the selected modeling granularity
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Fig. 1. Selected topology ofG
[2]
eq , changes in the global metric of accuracy and CPU time at each iteration (adapted

from Nocera and Gardoni (2022))

of G
[2]
eq (corresponding to α = 0.42) and the

values of GN at each iteration of the iterative

search. Also, we show the changes in GN at each

uth iteration and the mean CPU time per run (with

its confidence band) for the pre-hazard scenario

and the 100 simulated earthquake scenarios. In

Figure 1, we show the values ofGN and the mean

CPU time per run also for values of α > 0.42.

As the modeling granularity increases, the results

show a relatively small increase in accuracy at

a high computational cost. The estimates of the

mean time per run indicate the savings in the

computational cost if G
[2]
eq would be used in fully

probabilistic analyses. The results show that using

the selected modeling granularity would save (on

average) 54% of CPU time per run in fully proba-

bilistic analyses.

6. Conclusions

Accurate risk analysis requires representative

mathematical models of infrastructure. One of

the main challenges in developing mathematical

models of infrastructure is selecting the modeling

granularity. Different modeling granularities may

affect the ability to capture the spatial variability

of the impact arising from the changes in the

ability of critical infrastructure to fulfill service

demands. This paper presented a mathematical

formulation to select the granularity for the mod-

eling of infrastructure to obtain the quantities of

interest with the desired level of accuracy. First,

we obtained equivalent simplified infrastructure

models using estimates of topological character-

istics of a detailed infrastructure model. Then, we

formulated the selection of the model granularity

as an iterative process. The formulation adaptively

increases the granularity starting from a low-

granularity infrastructure model until we reach the

desired tradeoff among accuracy, simplicity, and

computational efficiency. To define the tradeoff,

we introduced metrics that measure the level of

agreement between estimates of the quantities of

interest computed using different levels of granu-

larity. As an example, we applied the formulation

to select the granularity of the potable water in-

frastructure model in Seaside, Oregon, to quantify

its performance following a seismic event. The

example showed that using the presented formu-

lation would save significant CPU time per run in

fully probabilistic analyses with a prescribed level

of accuracy.
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