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A rapid pace of climate change is now becoming evident by a marked increase in the frequency and intensity of
weather extremes, and this trend is expected to continue with an increase in global warming in the coming decades.
The paper presents the linear extension of the Yule process (LEYP) as a general stochastic model of environmental
hazards induced by non-stationary climate conditions. The LEYP is a more versatile model than the Poisson process,
as it can incorporate dependence among events occurring over time. In the paper, explicit expressions have been
derived for the return period, a traditional measure of reliability that is commonly used in the design of infrastructure
systems. Unlike the stationary climate, the return period between extreme events would continue to decrease as
climate change effects would become more pronounced in the future. Examples presented in the paper demonstrate
that a modest degree of statistical dependence among events leads to a significant reduction in the return period,
i.e., a remarkable increase in the frequency of extreme events. Therefore, existing design codes would need to be
revised to accommodate such non-stationary changes to ensure a high level of safety of infrastructure systems in the
changing climate.
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1. Introduction

Climate is changing due to increase in the green-

house gas emissions caused by human activities.

The increasing pace of climate change is mani-

festing through increased frequency and intensity

of extreme weather events, such as heat waves,

droughts, rain storms, hurricanes, and wildfires

in many parts of the world. Increasing severity

of weather events is threatening the safety and

functionality of existing infrastructure systems,

namely, buildings, bridges, roads, transit systems,

water supply, storm water and sewage systems,

and adding the burden of costly repair of damaged

systems.

Current infrastructure design codes are based

on an implicit assumption that climate-induced

stresses are stationary, i.e., their occurrence fre-

quency and intensity do not change with chrono-

logical time. Under this assumption, historical

time series of environmental extreme events are

analyzed to estimate appropriate reliability mea-

sures used in the design of infrastructure systems.

The return period is such a measure that is com-

monly used to specify a design scenario (event) in

codes and standards.The return period can be de-

fined as the average time between two consecutive

extreme events. For example, 50-year wind speed

is used in the building design, and 50 year rain

event is used in the design of storm water systems.

The flood protection structures are design for re-

turn periods ranging from 500 to 10,000 years,

depending on the magnitude of losses caused by

flooding.

The climate change causing temporal varia-

tions in the occurrence pattern of weather ex-

tremes raises a question about the validity of

currently used stationary model of hazards in

the future. This motivates the development of

non-stationary stochastic models of environmen-

tal hazards, which can be used to revise existing

codes to make them compatible with plausible

scenarios of climate change.
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Several studies have discussed methods for

computing the return period in the non-stationary

climate (Read and Vogel, 2015). However, al-

most all the previous studies primarily focused

on the computation of the FIRST occurrence of

the extreme event without recognizing that the

subsequent return of extremes would not follow

the same distribution of the inter-arrival time (i.e.,

return period) as the very first one. The point

was further elaborated in a recent study which

proposed the non-homogeneous Poisson process

(NHPP) as a model of time-dependent increase

in the frequency of hazards in the non-stationary

climate and evaluated its impact on structural

reliability (Pandey and Lounis, 2023). However,

the ”independence” property is a key limitation

of the Poisson process, i.e., distributions of the

number of events in any two disjoint intervals

are independent of each other. The reason is that

sustained global warming over a long period of

time can introduce dependence among weather

extremes. Phenomena like El Niño and La Nina

are already known to introduce a short-term de-

pendence among various weather events.

The limitation of NHPP can be overcome by

the use of more general forms of the birth pro-

cesses, such as the Linear Extension of the Yule

Process (LEYP) proposed by Le Gat (2009) and

its extensions proposed by Badı́a et al. (2019).

In the LEYP, the occurrence frequency of events

depends on time, similar to the NHPP, as well as

on the number of events that occurred in the past,

thereby introducing the dependence between the

distributions of the number events in two disjoint

intervals.

The main objective of this paper is to derive ex-

plicit expressions for the return period of extreme

events modelled as LEYP, and quantify the de-

pendence via the correlation coefficient between

the number of events in two time intervals. In

this manner, this study presents a more general

approach to account for non-stationary nature of

climate change effects in the design of infrastruc-

ture systems.

2. Stochastic Modelling of Extreme
Events

2.1. Background

Extreme events arriving randomly over time can

be modelled as a stochastic point process con-

sisting of an increasing sequence of positive ran-

dom variables, S0 = 0 < S1 < S2 < · · · ,
which represent arrival times of events (see Fig.1).

A stochastic counting process, N(t), associated

with this sequence can be defined as, N(t) =∑∞
i=1 1{Si≤t}, where 1A is an indicator function

associated with an event A. Note that N(t) de-

notes the (random) number of events occurring in

a time interval, (0, t] .

A class of continuous time, discrete state

Markov processes, such as the Poisson process,

have been widely used in the reliability analysis.

Such processes can be defined using a rate func-

tion and a set of postulates to characterize the state

transition in an infinitesimal time interval (Taylor

and Karlin, 1998). First, the probability of state

transition, i.e., occurrence of an event, in a small

time interval, (t, t+ h], is postulated as

P [N(t+ h)−N(t) = 1|N(t) = k]

= λ(k, t)h+ o(h), (h→ 0+) (1)

Here, λ(k, t) denotes the rate of the process that

can depend on time, t, and the number of events,

k, that occurred in the past interval, (0, t] . Also,

o(h) denotes terms of order h. The second postu-

late defines the probability of no transition as

P [N(t+ h)−N(t) = 0|N(t) = k]

= 1− λ(k, t)h+ o(h) (2)

Using these postulates, a differential equation for

Pn(t) = P [N(t) = n] can be derived for n ≥ 1

as

P ′n(t) = −λ(n, t)Pn(t) + λ(n− 1, t)Pn−1(t)

(3)

Timet0 S1 S2 Sn−1 Sn

T1 T2 Tn

Fig. 1. A point process model of arrival of extreme
events
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and for n = 0, P ′0(t) = −λ(0, t). This differen-

tial equation can be analytically solved for some

specific forms of the rate function, λ(k, t).

2.2. Poisson Process

When the rate function depends only on time, i.e.,

λ(k, t) = λ(t), it leads to a well-known non-

homogeneous Poisson process (NHPP) with the

following expression for Pn(t):

Pn(t) =
(Λ(t))n

n!
e−Λ(t), (0 ≤ k <∞) (4)

where, Λ(t) =
∫ t

0
λ(x)dx, is known as the mean

value function, i.e., Λ(t) = E [N(t)]. Note that

a constant rate, i.e., λ(k, t) = λ, leads to the

homogeneous Poisson process.

The ”independence” is the most important

property of the Poisson process, which implies

that the number of events in non-overlapping time

intervals are independent Poisson random vari-

ables. The independence property results in a con-

siderable simplification of analysis of problems

related to the Poisson process. On the other hand,

this property is a main limitation of the model,

as it precludes the modelling of a sequence of

dependent events.

2.3. Birth Processes

When the rate of occurrence of an event at a

given time depends on the number of events which

have already occurred, it leads to another class

of processes, known as the birth process. These

processes are more general than the Poisson pro-

cess, as the number of events in any two disjoint

intervals are no longer independent.

The case of λ(k, t) = kλ is known as the

Yule process (Taylor and Karlin, 1998). A more

general form of the birth process was introduced

by Le Gat (2014) with the following rate function:

λ(k, t) = (ak + b)λ(t) (5)

where k is the number of events occurred in (0, t)

with a ≥ 0 and b > 0. The resulting process

was named as the ”Linear Extension of the Yule

Process” (LEYP), and also referred to as the Gen-

eralized Polya Process (GPP) by Cha (2014). In

the following, we assume that a > 0, which is not

a restriction, as when a = 0, the LEYP becomes a

NHPP for which all results can be found in Pandey

and Lounis (2023).

In the LEYP model, the distribution of Pn(t)

follows the negative binomial distribution with the

following standard form:

Pn(t) =
Γ(α+ n)

n!Γ(α)
(β)α (1− β)n (6)

for all n ∈ N
∗. Note that α and β are the distribu-

tion parameters, and Γ (·) is the gamma function.

For the sake of brevity, this distribution is denoted

as NB(α, β). The mean (μ) and variance (σ2) of

this distribution are given as

μ = α
1− β

β
, and σ2 =

μ

β
(7)

Other probabilistic properties of LEYP are dis-

cussed in more details in the next Section.

3. LEYP: Probabilistic Properties

3.1. The Number of Events

The marginal distribution of the number of events

in a time interval, (0, t] , is given as Konno (2010)

P (N (t) = n)

=
Γ
(
n+ b

a

)
n!Γ

(
b
a

) (
e−aΛ(t)

) b
a
(
1− e−aΛ(t)

)n

(8)

This distribution is NB(α, β) with α = b/a

and β = e−aΛ(t). Its mean and variance can be

computed using Eq.7.

Using the restarting property of the LEYP, as

defined by Cha (2014), the distribution of an in-

crement, N (s, t) = N(t)−N(s), conditioned on

N (s−) = k, 0 < s < t, is given as

P
(
N (s, t) = n|N (

s−
)
= k

)

=
Γ
(
n+ k + b

a

)
n!Γ

(
b
a + k

) (
e−aΛ(s,t)

) b
a+k (

1− e−aΛ(s,t)
)

(9)

for all k, n ∈ N. This distribution is NB( ba +

k, e−aΛ(s,t)), with Λ(s, t) =
∫ t

s
λ(x)dx.

3.2. Distribution of Arrival Times

Using the fact that the events [Sn > t] and

[N(t) ≤ n] are equivalent, the marginal distribu-
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tion of Sn can be written as,

FSn
(t) =

n−1∑
k=0

P [N(t) = k] (10)

Based on a result given by Johnson et al. (2005,

Section 5.6), this can also be written as

F̄Sn (t) = Ie−aΛ(t)

(
b

a
, n

)
(11)

where Ix (α, β) is the incomplete beta function.

The pdf of Sn can now be derived as fSn
(t) =

−F̄ ′Sn
(t), which leads to

fSn
(t) =

a

B
(
b
a , n

)λ (t) e−bΛ(t)
(
1− e−aΛ(t)

)n−1

(12)

where B(x, y) denotes the complete Beta func-

tion.

3.3. A Measure of Dependence

In case of a LEYP, the dependence between two

successive increments, N12 = Nt2 − Nt1 and

N23 = Nt3 − Nt2 , 0 ≤ t1 < t2 < t3, can be

evaluated in terms of the correlation coefficient

that is defined in a usual manner as

ρ(N12, N23) =
COV [N12, N23]

σ [N12]σ [N23]
(13)

where the numerator is the covariance between

N12 and N23. Here, the main task is the deriva-

tion of an expression for the product moment of

increments, i.e., E [N12N23], which is presented

in Appendix A. Expressions for the mean and

standard deviation of an increment are given by

Le Gat (2015). Using these expressions, the final

expression for the correlation coefficient is de-

rived as

[ρ (N12, N23)]
2
=(

eaΛ(t2) − eaΛ(t1)
) (

eaΛ(t3) − eaΛ(t2)
)

(
1 + eaΛ(t2) − eaΛ(t1)

) (
1 + eaΛ(t3) − eaΛ(t2)

)
(14)

4. Analysis of the Return Period

4.1. Mean Inter-Arrival Time

This Section derives the probability distribution

and the mean of an nth inter-arrival time, Tn =

Sn − Sn−1, n > 1, S0 = 0, which is also referred

to as the nth return period.

The event [Tn > u] is equivalent to the

event that no shocks occur in the interval,

(Sn−1, Sn−1 + u]. Thus,

P [Tn > u] = P [N(Sn−1, Sn−1 + u) = 0]

=

∫ ∞

0

P [N(s, s+ u) = 0|Sn−1 = s] fSn−1
(s)ds

(15)

The case of n = 1 is a especial case with Λ (0) =

0 for which the distribution of T1 can be directly

obtained using Eq.(8) as

FT1
(u) = P [N(u) = 0] = e−bΛ(u) (16)

In the case of n ≥ 2, the conditional proba-

bility in Eq.(15) can be simplified by noting that

[Sn−1 = s] ≡ [N(0, s) = n− 1], i.e.,

P [N(s, s+ u) = 0|Sn−1 = s]

= P [N(s, s+ u) = 0|N(0, s) = n− 1]

Substituting for the conditional probability from

Eq.(9) and for fSn−1
(s) from Eq.(12) into Eq.(15)

leads to

F̄Tn
(u) =

a

B
(
b
a , n− 1

)×
∫ ∞

0

λ (s) e−g(u,s)
(
1− e−aΛ(s)

)n−2

ds (17)

where the function, g(u, s), is defined as

g(u, s) = a (n− 1)Λ (s, u+ s) + bΛ (u+ s)

(18)

The expected value of a positive random vari-

able, Tn > 0, N ≥ 1, can be obtained by integrat-

ing the complementary CDF function as

E [Tn] =

∫ ∞

0

FTn
(u)du (19)

Thus, any nth return period can be computed using

Eqs.(17) and (19).

In case of an NHPP with the rate function, λ(t),

the following expression for the return period was

derived by Pandey and Lounis (2023):

E [Tn] =

∫ ∞

0

e−Λ(s) [Λ(s)]
n−1

(n− 1)!
ds (20)
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4.2. Waiting Time for the Next Event

At any given time t, the waiting time, W (t), to

the occurrence of the next event can be defined, as

shown in Figure 2, as W (t) = SN(t)+1 − t. The

distribution of W (t) can be obtained from the re-

lation, P [W (t) > w] = P [N(t, t+ w) = 0], and

noting that N(s, t), s < t, follows the negative

binomial distribution with parameters, α = b/a

and 1/β = 1 + eaΛ(t) − eaΛ(s) (Le Gat, 2015).

Thus,

FW (w; t) =

(
1

1 + eaΛ(t+w) − eaΛ(t)

)b/a

(21)

The mean waiting time can then be obtained as

E [W (t)] =

∫ ∞

0

FW (w; t)dw (22)

5. Numerical Examples

The impact of the non-stationary nature of a hypo-

thetical hazard process is illustrated through sev-

eral examples. The stationary climate condition

is assumed as the base case in which the hazard

is modelled as the homogeneous Poisson process

(HPP) with the rate, λo = 0.02 events/year, which

corresponds to a return period of 50 years. The

time horizon of the analysis is taken as te = 80

years (from 2020 to 2100).

Under the non-stationary climate, the rate of oc-

currence of hazards is assumed to increase linearly

from λo in 2020 to kλo in 2100 as,

λ(k, s) = λo + (k − 1)λo
s

te
(23)

In this study, k is referred to as the frequency

amplification factor. The rate function of LEYP is

given by Eq.(5) with b = 1 and λ(k, t) given by

Eq.(23) for all numerical examples.

First the NHPP model is analyzed with the rate

function given by Eq.(23) as a reference solution.

Figure 1 plots the first six return periods for k =

Timet0 S1 S2 Sn Sn+1

W (t)

Fig. 2. Definition of the waiting time to the next event
at time t

1, 2, and 4, computed using Eq.(20). The case of

k = 1 represents the stationary Poisson process

with a constant return period of 50 years. In case

of k = 2, the first return period decreases to 36

years and the 6th return period to 18 years. The

decrease in the return period is further amplified

with an increase in the non-stationary effect when

k = 4.

In case of an LEYP model, first the dependence

is quantified in terms of the correlation coefficient

between the number of events in two consecutive

intervals, i.e., N(t − u, t) and N(t, t + u) for

a = 0.5, 1 and 2. Using Eq.(14), the Correlation

Fig. 3. Return periods for the NHPP model

Fig. 4. Variation of the correlation coefficient with
time in LEYP model
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coefficient, ρ(t, u) is computed as a function of

time, t and u = 5 years, and plotted in Figure 4.

It is clear that the correlation coefficient increases

with increasing values of the parameter a and time

t. For a = 0.5, ρ(t, 5) increases rather modestly

from 0.05 at t = 5 to 0.1 at t = 75. In case of

a = 1, ρ(t, 5) increases from 0.1 to 0.3, and for

a = 2, it increases from 0.2 to 0.8 over the same

period.

The effect of dependence can be further illus-

trated by comparing plots of the expected number

of events versus time for LEYP and correspond-

ing NHPP models, as shown in Figure 5. The

expected number of events over an 80 year period,

E [N(80)], is computed as 1.6. In case of an NHPP

with k = 2, this expected value increases to 2.4.

However, in the related LEYP model with k = 2

and a = 0.5, the value of E [N(80)] is almost dou-

bled to 4.64. The increase in the expected number

of events is much more dramatic for an LEYP with

k = 4 and a = 0.05. In this case, E [N(80)]

increases to 12.77, almost three times the value for

a corresponding NHPP. It should be noted from

Figure 4 that a = 0.5 implies a fairly modest

degree of dependence with maximum correlation

coefficient of 0.1. In spite of this, a significant

increase is observed in the expected number of

events. In summary, the dependence in the LEYP

further amplifies the increase in the frequency of

Fig. 5. A comparison of the expected number of
events in NHPP and LEYP models

extreme events caused by a non-stationary rate of

occurrence of the process.

The first six return periods were computed for

the LEYP model with a = 0.5 and the three values

of the frequency amplification factor, k = 1, 2,

and 4, and results are plotted in Figure 6. It should

be noted that the first return period (RP) in the

LEYP model is the same as that in the correspond-

ing NHPP model. However, subsequent RPs of the

LEYP model decrease significantly as compared

to those of the corresponding NHPP models, as

shown in Figure 3. Even in case of the stationary

climate, i.e., k = 1, a large reduction is seen in

return periods of the LEYP as compared to the 50-

year reference value. For example, the second RP

is reduced to 33.33 years and the sixth RP to 14.28

years when k = 1 and a = 0.5. This reduction

is due entirely to the dependence property of the

LEYP model.

The dependence combined with a

non-stationary rate amplifies the reduction in RP

values. For example, for k = 2 and a = 0.5, the

second RP of LEYP model reduces to 20.5 years,

whereas the corresponding NHPP model has this

value as 28.9 years. If a is increased to 1, the

second RP of the LEYP further reduces to 15.9

years, as shown in Figure 7.

Plots of the mean waiting times over a period of

0-80 years are presented in Figure 8 for the LEYP

model with a = 0.5. The mean waiting time for

Fig. 6. A sequence of return periods for LEYP models
with a = 0.5
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the next event also decreases with the passage of

time due to the combined effect of non-stationary

rate and the dependence in the LEYP model. The

mean waiting time could be a more useful mea-

sure, as it does not require any information about

the number of events that occurred in the past.

6. Conclusions

The non-stationary nature of climate change ef-

fects is expected to increase the frequency of

weather extremes over time and also introduce

some (statistical) dependence among the events.

To incorporate the time-dependent frequency and

Fig. 7. A sequence of return periods for the LEYP
model with a = 1

Fig. 8. The mean waiting time for the LEYP model
with a = 0.5

the dependence among events, the paper presents

the Linear Extension of the Yule Process (LEYP)

as a general stochastic model of environmental

hazards. The non-homogeneous Poisson process

(NHPP) is a especial case of the LEYP model,

which retains the independence property.

To illustrate the proposed approach, the paper

postulates a hypothetical example of a linear in-

crease in the occurrence rate of a hazard over an

80-year period of global warming (2020-2100).

The degree of climate change is defined by the

ratio (k) of occurrence frequency in the 80th year

to that in the base case of the stationary climate,

and referred to as the climate amplification factor.

Examples presented in the paper show that a

time-dependent increase in the occurrence rate,

such as that in the NHPP model, leads to a signif-

icant reduction in return periods over time. This

reduction is further amplified in case of the LEYP

model, even with a fairly modest degree of corre-

lation (or dependence) among events. Therefore,

ignoring the dependence can result in a significant

underestimation of return periods of weather ex-

tremes, which can have an adverse impact of the

safety of infrastructure systems.

Since the return period would no longer be

a constant in the changing climate, its use to

specify design scenarios in codes standards would

become questionable. The infrastructure design

codes must be revised to address this issue.
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Appendix A.

To evaluate the correlation coefficient using

Eq.(14), the main task is to compute the product

moment, E [(Nt2 −Nt1) (Nt3 −Nt2)]. This Sec-

tion presents a brief outline of this derivation.

Conditionning by Nt1 and Nt2 −Nt1 , leads to

E [(Nt2 −Nt1) (Nt3 −Nt2)]

= E [E [(Nt2 −Nt1) (Nt3 −Nt2) |Nt1 , Nt2 −Nt1 ]

= E [(Nt2 −Nt1)E (Nt3 −Nt2 |Nt2)] (A.1)

as Nt3 −Nt2 only depends on Nt1 and Nt2 −Nt1

through Nt2 = Nt1 + (Nt2 −Nt1).
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Based on the restarting property (Cha, 2014), it

can be shown that

[Nt3 −Nt2 |Nt2 = k] ∼ NB
(
b

a
+ k, e−aΛ(t2,t3)

)

such that its expectation can be given as,

E (Nt3 −Nt2 |Nt2) =

(
b

a
+Nt2

)(
eaΛ(t2,t3) − 1

)

(A.2)

With this relation, the expectations given in

Eq.(A.1) can be evaluated after a considerable

analytical simplifications, which finally leads to

an expression for the correlation coefficient given

by Eq.(14).
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défaillances de canalisations d’eau sous pres-
sion. Ph. D. thesis, AgroParisTech.

Le Gat, Y. (2014). Extending the yule process to

model recurrent pipe failures in water supply

networks. Urban Water Journal 11(8), 617–

630.

Le Gat, Y. (2015). Recurrent Event Modeling
Based on the Yule Process: Application to Wa-
ter Network Asset Management. John Wiley &

Sons.

Pandey, M. D. and Z. Lounis (2023). Stochas-

tic modelling of non-stationary environmental

loads for reliability analysis under the changing

climate. Structural Safety 103, 102348, 1–11.

Read, L. K. & R. M. Vogel (2015). Reliability,

return periods, and risk under nonstationarity.

Water Resources Research 51(8), 6381–6398.

Taylor, H. M. and S. Karlin (1998). An Intro-
duction to Stochastic Modeling (3rd ed.). San

Diego, CA: Academic Press.


