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Robust and accurate prognostics models for estimation of remaining useful life (RUL) are becoming an increasingly
important aspect of research in reliability and safety in modern electronic components and systems. In this
work, a data driven approach to the prognostics problem is presented. In particular, machine learning models are
trained to predict the RUL of wire-bonded silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors
(MOSFETs) subjected to power cycling until failure. During such power cycling, ON-state voltage and various
temperature measurements are continuously collected. As the data set contains full run-to-failure trajectories, the
issue of estimating RUL is naturally formulated in terms of supervised learning. Three neural network architectures
were trained, evaluated, and compared on the RUL problem: a temporal convolutional neural network (TCN), a long
short-term memory neural network (LSTM) and a convolutional gated recurrent neural network (Conv-GRU). While
the results show that all networks perform well on held out testing data if the testing samples are of similar aging
acceleration as the samples in the training data set, performance on out-of-distribution data is significantly lower. To
this end, we discuss potential research directions to improve model performance in such scenarios.
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1. Introduction

1.1. Background

Modern electronic components are increasingly

complex which, in turn, increases the risk of fail-

ure. In order to ensure the reliability and safety

of these components, it is advantageous to be able

to predict the remaining useful life (RUL) of the

components. This problem is especially important

in the context of safety critical applications such

as aerospace, automotive, and medical devices.

One key aspect of RUL prediction is the ability to

collect data from the components during their op-

eration, especially when subject to varying oper-

ating conditions. Furthermore, these data need to

contain complete run-to-failure trajectories of the

components in order to capture the entire degra-

dation process and enable the use of supervised

machine learning.

However, collecting such data from compo-

nents being in use has historically been associ-

ated with increased risk and high costs. Inter-

estingly, the cost of collecting relevant data via

various sensors has recently decreased. Despite

this, data sets from operating components, con-

taining complete run-to-failure trajectories, are

still scarce. To alleviate this issue and to drive

research in this area, a data set consisting of the

degradation histories of 33 wire-bonded silicon

carbide (SiC) metal–oxide–semiconductor field-
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effect transistors (MOSFETs) subjected to power

cycling until failure was recorded. The SiC MOS-

FETs were cycled at different loadings, i.e., vary-

ing degree of aging rate, leading to a substantial

variety in degradation and life lengths.

In this work, a data-driven approach to the RUL

estimation problem is presented. In particular,

machine learning models are used to predict the

RUL of the SiC MOSFETs. The machine learn-

ing models studied are various variants of deep

neural networks (DNNs). In particular, temporal

convolutional neural networks (TCNs) Lea et al.

(2016), long short-term memory neural networks

(LSTMs) Hochreiter and Schmidhuber (1997),

and convolutional gated recurrent neural networks

(Conv-GRUs) Ballas et al. (2016), are evaluated

and compared on the RUL estimation task.

1.2. Derived Features Data Set

The data set used in the presented work is a collec-

tion of SiC MOSFETs power cycled under diverse

loadings. The MOSFETs are cycled in a power

cycling rig which allows for continuous monitor-

ing of the voltages and various temperatures. The

rig outputs data in a structured text-format which

are parsed to obtain time series of the collected

measurement quantities. This process is shown in

Figure 1.

Devices under test (DUTs) are cycled until ei-

ther of the set rig failure conditions are met:

• measured ON-state voltage is higher than

8 V, or

• recorded MOSFET casing temperature is

higher than 100 ◦C.

The settings for experiment rounds one through

five is shown in Table 1.

After the data have been parsed in a useful

format, key characteristics for each cycle are

extracted. As a result, one obtains a final data

set consisting of 21 features recorded per cycle,

namely: The cycle count is the number of cycles

the DUT has been cycled and the consumed life

is the fractional life left until failure (bounded in

the interval [0, 1]). End voltage and end resistance

correspond to the voltage and resistance measured

at the end of the cycle, respectively. Note that

Fig. 1. The data generation process, from power
cycled MOSFETs to time series data, making data
amenable for machine learning modeling.

Table 1. SiC MOSFETs data set, indexed by

experiment number.

Exp. no. Current DUTs ON OFF
(#) (A) (#) (s) (s)

1 25 A 5 10 10
2 23 A 10 10 10
3 24 A 10 10 10
4 28 A 8 10 10
5 25 A 10 15 10

“min”, “max” and “mean” prefixes translate to

the lowest, highest and average recorded measure-

ment of the corresponding feature within the cycle

time frame, respectively. Furthermore, end resis-

tances from max leg and mean block temperatures

stand for end resistances one should expect for

a system in the “healthy” (not degraded) state,

and they have been estimated using two different

methods based on specific temperatures as indi-

cated. Residual end resistances represent then the

accumulated damaged obtained by subtracting the

“healthy” resistances from the actual resistances.

Finally, the “clean” qualifier means that the data

have been additionally subjected to some data

cleaning procedure. A summary of the derived

features is shown in Table 2. The data set of de-

rived features is the basis for the RUL estimation
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Table 2. Derived features data set.

Feature Unit

Cycles unitless
Consumed life unitless
End voltage V
End resistance mΩ
Min leg temperature ◦C
Max leg temperature ◦C
End resistance from
max leg temperature

mΩ

Residual end resistance from
max leg temperature

mΩ

Cleaned residual end resistance from
max leg temperature

mΩ

Min temperature ◦C
Max temperature ◦C
Min block temperature 1 ◦C
Max block temperature 1 ◦C
Min block temperature 2 ◦C
Max block temperature 2 ◦C
Min water inlet temperature ◦C
Max water inlet temperature ◦C
Min water outlet temperature ◦C
Max water outlet temperature ◦C
Mean block temperature ◦C
End resistance from
mean block temperature

mΩ

Residual end resistance from
mean block temperature

mΩ

Cleaned residual end resistance from
mean block temperature

mΩ

task where RUL is related to consumed life (CL)

as follows: RUL = 1− CL.

2. Methodology

2.1. Data Preprocessing

Although a considerable amount of effort was

devoted to create a set of derived features, a data

set developed for RUL estimation modeling, some

data preprocessing was needed to make the data

suitable for machine learning. The performed data

preprocessing is consistent with common practice

in machine learning, namely, it involves splitting

data into training and holdout data and standard-

izing data to make features equally scaled. As a

first step, data are split into training, validation,

and testing sets. This allows for training the model

on a subset of the data, tuning its hyperparame-

ters on another subset, and finally evaluating its

performance on a holdout set. The splitting of the

data into the training, validation, and testing sets

was carried out in such a way that MOSFETs from

experiments with a higher rate of aging were used

in training and validation sets while MOSFETs

from the least accelerated aging experiment (23

A, experiment 2, cf. Table 1) were used for the

held out testing data set. This approach is used to

enable a more accurate estimation of the models’

performance for operating conditions outside the

training data distribution.

Next, data are standardized based on the train-

ing data. This step involves subtracting the mean

and dividing by the standard deviation,

X̃ =
X− X̄

s
(1)

where

X̄(p) =
1

N

N∑
i=1

X
(p)
i (2)

s =

√√√√ 1

N

N∑
i=1

(
X

(p)
i − X̄(p)

)2

(3)

and p = 1, . . . , P , with P being the number

of features in the data set. This ensures that all

features are weighted equally and the model can

learn meaningful patterns from the data. Here,

it is important to standardize validation and test

data based on the feature averages and standard

deviations based on training data to avoid data

leakage.

2.2. Remaining Useful Life Estimation

The remaining useful life estimation problem can

be formulated as a supervised learning problem

since the data consists of complete run-to-failure

trajectories. It means that a mapping f from a

collection of sensor time series data, D, to RUL,

y, is learned:

f : D �→ y. (4)

In this case, D is the set of features per cycle

as given in Table 2 and y is the RUL, for each

MOSFET.
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2.3. Model Architectures

The models chosen for RUL estimation repre-

sent different flavors of deep neural networks,

designed for time series data. Essentially, artifi-

cial neural networks consists of layers of artifi-

cial neurons connected by so called weights. In a

Feed Forward Neural Network (FFNN) Goodfel-

low et al. (2016) the forward pass from one layer

to the next is defined by

h(l) = σ(l)
(
W(l)�h(l−1) + b(l)

)
, (5)

for l = 2 . . . L, where h(l) is the input to the layer

l (with l = 1 corresponding to the input layer such

that h(1) = x, where x represent the input data).

W(l) is the weight matrix containing the weights

connecting layer l − 1 and l and b(l) is what is

called the bias. L stands for the number of layers

in the neural network and σ represents a non-

linear transformation referred to as the activation

function. In general, different layers may have

different activation functions, hence the subscript

in Equation (5). A common choice for activation

function is the sigmoid activation function

σ (x) =
1

1 + exp (−x)
(6)

or the rectified linear unit (ReLU)

σ (x) =

{
0 for x ≤ 0,

x for x > 0.
(7)

2.3.1. Temporal Convolutional Neural
Network

The Temporal Convolutional Neural Network

(TCN) is a type of neural network architecture

that is designed to process sequential data, such as

time series or natural language sentences Lea et al.

(2016). It is based on the Convolutional Neural

Network (CNN) architecture LeCun et al. (2015),

which is commonly used for image recognition

tasks. The TCN architecture consists of a series

of convolutional layers, each of which applies a

set of filters to the input sequence. The filters

are designed to capture different patterns in the

data, such as short-term dependencies or long-

term trends. The output of each convolutional

layer is then passed through a non-linear activa-

tion function, such as a ReLU (cf. Equation (7)), to

introduce non-linearity into the model. One of the

key features of the TCN architecture is the use of

dilated convolutions, which allow the network to

capture patterns at different time scales. A dilated

convolution is a convolutional operation where

the filter is applied to the input sequence with

gaps between the values. This allows the filter to

capture patterns that are spread out over a larger

time window, without increasing the number of

parameters in the model. Another important as-

pect of the TCN architecture is the use of residual

connections, which help to mitigate the problem

of vanishing gradients. A residual connection is a

shortcut connection that allows the output of one

layer to be added to the input of a later layer. This

helps to ensure that the gradients can flow through

the network more easily, which can improve the

training process. TCNs have been used in RUL

prediction previously, e.g., for predicting lithium

ion battery failure Zhou et al. (2020).

2.3.2. Long Short-Term Memory Neural
Network

The Long Short-Term Memory (LSTM) neural

network Hochreiter and Schmidhuber (1997) is

a type of Recurrent Neural Network (RNN) that

is designed to handle the problem of vanishing

gradients in traditional RNNs. LSTM networks

are capable of learning long-term dependencies

in sequential data by selectively retaining or for-

getting information over time. The architecture of

an LSTM network consists of a series of memory

cells that are connected to each other through

gates. These gates control the flow of information

into and out of the memory cells, allowing the net-

work to selectively retain or discard information

based on its relevance to the current task. Each

memory cell in an LSTM network has three main

components: an input gate, a forget gate, and an

output gate. The input gate controls the flow of

new information into the cell, the forget gate con-

trols the retention or discarding of old informa-

tion, and the output gate controls the flow of infor-

mation out of the cell. LSTM networks have been

successfully applied to a wide range of tasks, in-

cluding speech recognition, natural language pro-

cessing, and image captioning. Such networks are
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particularly useful in tasks that involve long-term

dependencies, such as, predicting the next word

in a sentence or generating a sequence of musical

notes. LSTMs have been shown to perform well

in RUL prediction, e.g., turbofan engines, lithium

ion batteries, and other applications Zhang et al.

(2018); Zheng et al. (2017).

2.3.3. Convolutional Gated Recurrent Unit

The Convolutional Gated Recurrent Unit (Conv-

GRU) is a combination of two model architec-

tures; an RNN and a CNN. A GRU is a type

of RNN that is designed to process sequential

data, such as time series or natural language sen-

tences Cho et al. (2014). It was introduced as an

improvement over the traditional RNN architec-

ture. The GRU architecture consists of a series

of recurrent units, each of which has a gating

mechanism that controls the flow of information.

The gating mechanism consists of two gates: an

update gate and a reset gate. The update gate

determines how much of the previous state should

be retained, while the reset gate determines how

much of the new input should be incorporated

into the state. The update gate is computed using

a sigmoid function, which outputs a value in the

range between 0 and 1, defined in Equation (6).

Here, 0 means that the previous state is completely

ignored, while a 1 means that the previous state is

completely retained. The reset gate is also com-

puted using a sigmoid function, but it is applied

element-wise to the input and the previous state.

It allows the network to selectively forget or re-

member certain parts of the input sequence.

The Conv-GRU consists of multiple layers of

GRU cells, each of which is connected to a convo-

lutional layer. The convolutional layer processes

the input data at each time step, and the output is

fed into the GRU cell. The GRU cell then updates

its hidden state based on the input and the previous

hidden state, and produces an output that is passed

to the next layer Ballas et al. (2016).

2.4. Model Training

The models under consideration are trained for

one hundred epochs (an epoch corresponds to one

full pass of the training data set), with an initial

learning rate of 0.001 and their performance is

evaluated using Mean-Squared-Error (MSE) loss:

� (y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2
. (8)

The models are optimized through gradient de-

scent on the loss function using the AdamW

optimizer Kingma and Ba (2015); Loshchilov

and Hutter (2019). The neural networks are im-

plemented in Python Van Rossum and Drake

(2009), using the deep learning framework Py-

Torch Paszke et al. (2019) and a wrapper built on

top of PyTorch called PyTorch Lightning Falcon

and team (2019).

3. Results

The performance of the models is quantified in

terms of MSE, see Equation (8). In Table 3, the

MSE on the validation and test data sets are pre-

sented. In Figure 2, 3, and 4 the RUL evalua-

Table 3. Model performance in

terms of MSE. The most perfor-

mant model scores are highlighted

with bold text.

MSE

Model Validation Test

TCN 0.052 0.033
ConvGRU 0.025 0.032
LSTM 0.036 0.0607

tion plots for TCN, Conv-GRU and LSTM are

shown, respectively. The evaluation plot presents

the RUL (scaled in the domain [0, 1]) as a function

of the number of cycles. The blue points form-

ing a straight line depict the actual RUL (ground

truth) whereas the orange points represent pre-

dicted RUL. These plots give insight into whether

the model tends to overestimate or underestimate

RUL.

4. Discussion and Conclusions

In this paper an estimation of the Remaining Use-

ful Life (RUL) based on deep learning was pre-

sented for silicon carbide metal-oxide field effect
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Fig. 2. TCN model RUL estimation plots for test data
samples.

transistors (SiC MOSFETs). The data set obtained

by accelerated aging of MOSFETs is a novel

data set for developing prognostics models for

MOSFETs. Three different deep learning model

architectures were compared and evaluated. It was

shown in Table 3 that the models perform well

on RUL estimation task, particularly for devices

that were degraded at a similar pace as those in

the training data set. The Conv-GRU model and

the TCN model performed best on test set data

(data coming from a more gentle aging experi-

ment round) with the Conv-GRU model slightly

outperforming the TCN model. The Conv-GRU

Fig. 3. Conv-GRU model RUL estimation plots for
test data samples.

model has good performance while also being

parameter efficient, it has more than 100 times

fewer parameters than the TCN model that was

trained.

The performance of the models, however, de-

teriorates when making predictions on devices

subjected to more benign cycling conditions, as

can be observed in Figures 2, 3, and 4, leading

to an overestimation of RUL close to end-of-life.

This behavior is expected, as machine learning

models struggle on out-of-distribution data. To

make the models useful for real-world applica-

tions (for instance, automotive), this gap needs to

be bridged. A promising direction for this research
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Fig. 4. LSTM model RUL estimation plots for test
data samples.

is the use of Physics-Informed Machine Learning

(PIML) Xu et al. (2023). PIML aims at combining

knowledge of the physics of failure with data

driven models in order to enhance predictive per-

formance in situations when a sufficient amount

of data is not available, and to make prognostics

models more robust and reliable.
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