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In order to face the challenges incurred by climate change, the industry has been striving to improve the overall
performance of photovoltaic (PV) systems. Unsolved challenges remain concerning reliability, numerous unforeseen
outages, and high operation and maintenance (O&M) costs. In this context, this work increases the operational
performance of PV plants by improving current methodologies for O&M in PV systems. We develop a maintenance
approach based in a Markov decision process model to analyze the data from PV power plants, prioritize actions,
advise asset replacement, and schedule preventive maintenance tasks based on past experiences and the PV system
condition. The results allow economic improvement through downtime reduction and early detection of system
under performance.
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1. Introduction

The Paris Agreement, an international treaty on

climate change, has defined the necessary targets

to limit global warming to 1.5°C with a massive

contribution by renewable energy. Even consid-

ering the drastic decrease in solar panel cost in

the last ten years and the exponential increase

in photovoltaic (PV) installation, we remain be-

low expectations regarding goals for solar en-

ergy implementations. The United Nations Cli-

mate Change Conference’s goal of global solar

capacity by 2025 remains 4,500 GW above our

current forecast.

In order to face these challenges, the industry

has been striving to improve the overall perfor-

mance of PV systems. Solar PV energy has grown

tremendously due to technological and business

maturities. Solar has evolved rapidly from being

a subsidies-based model to being competitive in

auctions at wholesale electricity markets with tra-

ditional fossil fueled energies. However, unsolved

challenges remain concerning reliability, numer-

ous unforeseen outages, and high operation and

maintenance (O&M) costs. In the scenario, the

most critical aspect is to define the appropriate

time to perform maintenance actions.

The primary focus of this work is to provide

recommendations for effective maintenance ac-

tions. In cases where a decrease in performance

is observed, preventive or corrective maintenance
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may be necessary. This decision involves assess-

ing trade-offs between the most cost-effective ap-

proach for the PV system and the costs associated

with maintenance, such as labor, equipment, and

downtime. These trade-offs are evaluated based on

the expected future rewards. The main goal of this

project is to enhance the operational performance

of PV plants by improving current methodologies

for O&M in PV systems. To achieve this, we have

developed a Markov Decision Process that esti-

mates the probability of each system component

reaching a given degradation state. Maintenance

actions determine the transition between states

and are planned based on future rewards.

2. Markov decision processes

Markov Decision Process has been often used

to model maintenance management. Maintenance

involves technical and administrative actions

aimed at preserving an item or system, or restoring

it to a functional state. A Markov model is a

dynamic framework that allows for probabilistic

modeling of the evolution of a system over time.

It is a dynamic stochastic process that consists of

a sequence of states with a discrete state space and

transition matrix. The transitions between states

depend only on the current state, and not on any

past history, making it a memoryless process.

Such a model is called a Markov chain. A Markov

decision chain is an extension of a Markov chain

that allows for optimal decision-making based on

a sequence of actions. It is a stochastic process

governed by the state space, the action set in each

state, the transition probabilities, and the imme-

diate rewards obtained when a given action is

taken. A Markov Decision Process describes such

a dynamic model, which can be used to identify

optimal decisions over time. MDPs are controlled

by policies and decision rules, which specify how

to choose actions in each state of the system. A

policy is a sequence of decision rules that guides

the selection of actions in a way that maximizes

the expected reward.

Control policies can be highly dependent on the

age of the machine, leading to a large problem

dimension when considering additional state vari-

ables such as machine age and preventive main-

tenance states within the Markov chain model

(Kenné and Gharbi, 2004). To address this is-

sue, Park and Yoon (2012) proposed a modified

Markov chain model that accounts for the de-

terioration process, inspection, and maintenance

of equipment. Tomasevicz and Asgarpoor (2009)

employed a semi-Markov decision process to

evaluate the need for maintenance in power equip-

ment at different stages of deterioration, and de-

termine the appropriate maintenance type. Zhang

et al. (2017) proposed a Markov chain model to

estimate the time interval for the degradation of

offshore structures and investigated the potential

of this stochastic model in predicting maintenance

schedules. Chan and Asgarpoor (2006) proposed

an approach to determine the optimal maintenance

strategy for a component. By employing Markov

processes, the authors computed the state proba-

bilities and the optimal mean time for preventive

maintenance while maximizing the component’s

availability.

3. Mathematical Formulation

This section introduces a Markov Decision Pro-

cess to model the problem, where the states are

updated at each stage based on transition matrices

and depend only on the current state. The model

considers the discrete time t = 1, . . . , T and a

planning horizon of T .

Variables

The decision variables in this model are binary:

• xt
kam

takes the value 1 if maintenance action

am (m = 1, .., N − 1) is performed for equip-

ment k at time t, and 0 otherwise.

Equations

Maintenance actions determine the transition be-

tween states. The transition matrix of the Markov

process, denoted as Pt
kan

, provides the probabil-

ities of transitioning from one state to another

for equipment k at time t, based on each main-

tenance action an. Here, n = 0, . . . , N represents

the types of maintenance actions available, where

0 denotes no maintenance action, and N corre-

sponds to corrective maintenance action involving

equipment replacement.
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In the first step of the process, the initial proba-

bility state of each component is calculated based

on the equipment’s degradation level. To accom-

plish this, the current deterioration of each piece

of equipment must be determined. A binary indi-

cator, wtp
k , is used where 1 denotes maintenance

action performed for equipment k at past time tp,

and 0 indicates otherwise. The value of tp can

range from 0 to TP, which represents the total

time past for each equipment. A vector is created

to represent the probabilities of the deterioration

states according to Eq.(1), where dtki
represents

the probability of the equipment being in the dete-

rioration state i at time t.

d0k = λ ·
TP∏
tp=1

P

(
1− wtp

k

)
ka0

· P
(
wtp

k

)
ka1

, (1)

where λ is the probability vector for new equip-

ment.

Next, using the Markov process, the vector dt
k

for each equipment k is updated at each time t.

This is done by multiplying it with the transition

matrices Pt
kan

according to Eq.(2) (on the next

page). Therefore, at each time, this vector indi-

cates the probabilities of the equipment being in

each state of deterioration.

Objective Function

Maintenance actions are planned based on the ex-

pected future rewards, which in this case, depend

on the efficiency of the PV farm. To measure

the farm’s efficiency, the irradiance is used as a

metric. Therefore, the objective function incor-

porates a reward for the irradiance, which is a

function of both the equipment efficiency and the

maintenance action costs. The objective function

is represented in Eq.(3).

maxZ =
∑
t∈T

R(It|atn)
∑
k∈K

E(dt
k)− C(atn),

(3)

where E(dt
k) is the equipment efficiency function

regarding the probability vector of equipment k at

time t, C(atn) represents the cost of performing

maintenance action an at time t, and R(It) is the

reward that takes into account the maintenance

action schedule and the irradiance level at time t.

4. Optimal Maintenance Policy

In recent years, optimal maintenance policy so-

lution techniques have been sought using only

one maintenance state. It ignores the possibility

that different types of maintenance can be done

to correct specific problems. Including more than

one maintenance state, a maintenance model can

be more sufficiently applied to real-life situations.

The optimal maintenance policy is determined

using Markov Decision Processes, which describe

the action to be taken at each state to yield min-

imal cost and ensure high equipment availability.

Since the system may have numerous states with

different alternatives for each state, the number

of total possible policies can be very large. To

validate the proposed model and the optimal pol-

icy, three experiments are performed, each con-

sidering time in months, three maintenance ac-

tions (where a0 represents no maintenance, a1
represents low maintenance, and a2 represents

high maintenance or equipment replacement), and

three deterioration states (where Dk
0 represents a

working equipment, Dk
1 represents a failed equip-

ment, and Dk
2 represents a broken equipment).

These experiments use the following transition

matrices:

P t
ka0

=

⎡
⎣ 0.93 0.06 0.01

0.00 0.85 0.15

0.00 0.00 1.00

⎤
⎦

P t
ka1

=

⎡
⎣ 0.98 0.015 0.005

0.75 0.20 0.05

0.45 0.30 0.25

⎤
⎦ P t

ka2
=

⎡
⎣ 1 0 0

1 0 0

1 0 0

⎤
⎦ .

To perform the experiments, the matrices

P t
kan

, n = 1, 2, 3, are used for all equipment k

and all time periods t.

The rewards for irradiance are calculated by

considering the average number of daily sunlight

hours per month and the maintenance action atn
planned at time t. The resulting matrix is of size

3× 12 and is represented as follows:
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dt+1
k = dtk ·

⎧⎪⎪⎨
⎪⎪⎩P

(
xt
a0

)
ka0

·
⎡
⎣· · ·P

(
xt
kaN−1

)
kaN−1

· P
(
1− xt

kaN−1

)
kaN

· · ·
⎤
⎦
(
1− xt

ka0

)⎫⎪⎪⎬
⎪⎪⎭ (2)

R(It|an) =
[

5 10 15 20 30 50 50 30 20 15 10 5
30 40 50 40 30 10 10 30 40 50 40 30
50 40 30 10 10 5 5 10 10 30 40 50

]

The maximum and minimum reward values

were determined through empirical tests, taking

into account the months with the highest so-

lar incidence. The analysis considers the follow-

ing possibilities: not planning maintenance during

months with high sun exposure hours as the main-

tenance actions may cause system interruption,

and planning the high maintenance level only dur-

ing months with the lowest hours of sun exposure.

As mentioned, the equipment efficiency func-

tion is based on the probability vector of equip-

ment k at time t. However, for these experiments,

a constant vector (3× 1) is used to represent the

equipment efficiency values for each deterioration

state, which are then multiplied by the correspond-

ing probabilities in the actual probability vector of

equipment.

E(dt
k) = dt

k ·
⎡
⎣ 100

70

20

⎤
⎦ (4)

An efficiency of 100% corresponds the equip-

ment in the deterioration state D0; 70% of the effi-

ciency corresponds the equipment in deterioration

state D1; and 20% of the efficiency corresponds

the equipment in deterioration state D2.

The maintenance cost is determined by a matrix

that relates the reduction in equipment efficiency

associated with deterioration states to the planned

maintenance actions atn. This matrix specifies no

reduction for the action a0, a 20% reduction for

the action a1, and a 90% reduction for the action

a2. It is defined as follows:

C(atn) =

⎡
⎣ 0%(100) 20% 90%

0%(70) 20% 90%

0%(20) 20% 90%

⎤
⎦ =

⎡
⎣ 0 20 90

0 14 63

0 4 18

⎤
⎦

Finally, the equipment analyzed in the experi-

ments is a cable. Table 1 presents the components

k along with their respective lifetime (TP ), the

number of times the low maintenance level action

has been performed (wtp
k ), and the time at which

this action has been taken (tp).

Table 1. Components

k TP wtp
k tp

1 10 1 3
2 12 1 8
3 6 1 3
4 12 0 0
5 12 1 12

Additionally, all experiments were validated us-

ing an algorithm developed in Matlab® Language

that simulates an exact method, thus obtaining

an optimal solution by exhaustively exploring all

solution space.

4.1. Experiment 1

In this experiment, only one equipment, namely

k = 1, was considered. It has been operating for

10 months, and a low maintenance level action

was carried out in month 3. The updated deterio-

ration performance of this equipment, denoted as

d0k, is calculated using Eq.(1), where λ = [1 0 0]:

d0k = λ · [Pa0 ]
2 · [Pa1 ] · [Pa0 ]

7
= [xx xy yy].

The vector d0k indicates the probabilities of the

equipment being in deteriorating states 0, 1, and 2,

represented by xx%, xy%, and yy%, respectively.



2683Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

This information is subsequently utilized in Eq.(2)

to simulate the equipment’s deterioration states.

Furthermore, in this experiment, maintenance

action planning is performed for a period of one

year, starting from January. The objective is to

demonstrate the effectiveness of the proposed

model in achieving strategic maintenance plan-

ning considering irradiation, while simultaneously

maximizing the efficiency of the equipment.

Table 2. Experiment 1 – Results

k Total Z Optimal Solution (months)
Time (s) 1 2 3 4 5 6 7 8 9 10 11 12

1 1663 1295.4 2 2 2 2 1 1 1 1 2 1 1 1

Table 2 shows the results obtained from the

algorithm for the experiment. The objective func-

tion value Z was calculated using Eq.(3), which

represents the accumulated sum of the rewards

and the equipment efficiency over the year, dis-

counted by the maintenance costs. For the case

with only one equipment and two levels of deteri-

oration, the optimal maintenance policy suggests

that maintenance actions should not be performed

in months 5,6,7,8,10,11, and 12. In contrast, mi-

nor performance actions should be carried out in

months 1,2,3,4, and 9. The optimal solution avoids

performing maintenance actions during months

with higher irradiance levels, which include May,

June, July, and August. It is noteworthy that the

equipment has not been replaced, and the total

reward obtained was 1295.4.

4.2. Experiment 2

The second experiment aims to analyze the impact

of increasing the number of equipment. For this

purpose, all components presented in Table 1 are

considered for a planning horizon of one year,

starting in January.

Table 3 shows the suggested maintenance pol-

icy for each equipment k, comprising the objec-

tive function values and the maintenance action

performed each month for each equipment. The

executions were split since there was no depen-

dency on functionality among the components.

Table 3. Experiment 2 – Results

k Total Z Optimal Solution (months)
Time (s) 1 2 3 4 5 6 7 8 9 10 11 12

1 1630 1295.4 2 2 2 2 1 1 1 1 2 1 1 1
2 2050 1306.2 1 2 2 2 2 1 1 1 2 1 1 1
3 2188 1311.7 1 2 2 2 2 1 1 1 2 1 1 1
4 2105 1281.5 3 1 1 2 2 1 1 1 2 1 1 1
5 2247 1330.5 1 2 2 2 1 1 1 1 2 1 1 1

-: The total time for the execution was 10221 seconds (2.84

hours)

Thus, the total time is calculated by the sum of the

computational times of each execution. Further-

more, the non-dependence of functionality among

the components substantially reduces the number

of solutions, thereby decreasing the complexity

of the problem. The number of solutions can be

calculated as 5 · 312, i.e., the same number of

solutions multiplied by the number of components

of the system.

4.3. Experiment 3

This experiment aims to evaluate the model’s

ability to avoid maintenance actions during pe-

riods of high irradiation, even when the equip-

ment is highly deteriorated, by analyzing the start-

ing month of the planning process. The mainte-

nance planning horizon for both simulations is six

months, with one starting in April and the other

starting in June.

Table 4. Experiment 3 – Results from April start

k Total Z Optimal Solution (months)
Time (s) 4 5 6 7 8 9

1 0.06 703.6 2 2 1 1 1 2
2 0.04 715.7 2 2 1 1 1 2
3 0.04 719.3 2 2 1 1 1 2
4 0.05 597.6 3 1 1 1 1 2
5 0.06 736.2 1 2 1 1 1 2

-: The total time for the execution was 0.25 seconds

Table 4 displays the recommended maintenance

policy for each equipment k over a planning hori-

zon starting in April, while Table 5 shows the
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Table 5. Experiment 3 – Results from June start

k Total Z Optimal Solution (months)
Time (s) 6 7 8 9 10 11

1 0.08 624.5 3 1 1 2 1 1
2 0.04 644.2 1 1 2 2 1 1
3 0.04 657.7 1 1 2 2 1 1
4 0.04 624.5 3 1 1 2 1 1
5 0.04 709.2 1 1 1 2 1 1

-: The total time for the execution was 0.24 seconds

suggested maintenance policy for each equipment

k over a planning horizon starting in June. The

obtained results indicate that the suggested main-

tenance actions are directly influenced by the ir-

radiance rewards. However, the model does not

completely prevent highly deteriorated equipment

from undergoing maintenance actions in months

with higher solar incidence, leading to a lower

objective function value.

In this experiment, the initialization of the pro-

cess does not update the values relative to the

equipment’s life, regardless of the month it starts.

This means that the initial probability vector re-

mains the same, as shown in the following table:

Table 6. Initial probability vector

k d0k

1 [0.5359 0.2143 0.2498]
2 [0.6755 0.1929 0.1316]
3 [0.7240 0.1762 0.0998]
4 [0.1752 0.1162 0.7885]
5 [0.9030 0.0763 0.0207]

4.4. Overall Analysis

The results of this study showed that the proposed

model is complex and can be classified as NP-

complete, as it is an NP problem and the initial

solutions calculations are polynomial. However,

introducing functionality dependence among the

components and increasing the number of equip-

ment types could make it an NP-hard problem.

These scenarios should be further explored and

presented in future research.

To interface with this algorithm operators are

required to input two crucial sets of informa-

tion. Firstly, a matrix is provided where each row

specifies details for component k, encompassing

the current lifetime (TP ), the number of times

the low maintenance level action (wtp
k ) has been

performed, and the corresponding time (tp). Ta-

ble 1 illustrates a comprehensive example of this

matrix. Secondly, operators are required to indi-

cate the initial and final months of analysis. The

algorithm incorporates essential data concerning

transition matrices, rewards, efficiency, and cost.

Using the exact method, the algorithm is capa-

ble of effectively handling data for a duration of

approximately 12 months. The outputs are main-

tenance actions recommended by the algorithm,

enabling operators to evaluate their suitability. For

each equipment and month, a value between 1

and 3 is assigned, indicating actions as follows: 1

(no maintenance action), 2 (low maintenance level

action), and 3 (equipment replacement).

The proposed model is capable of simulating

the specific characteristics of the maintenance

planning problem presented. This demonstrates

the importance of involving subject matter ex-

perts, such as those knowledgeable about system

interruptions during periods of high irradiance, in

the development of the model. However, further

improvements can be made to the model by up-

grading the objective function to incorporate real-

world operating scenarios, with a particular em-

phasis on the equipment’s lifespan and efficiency.

Moreover, the study indicates that exploring al-

ternative transition matrices is essential, as taking

any preventive maintenance actions may trigger a

new equipment deterioration process. In addition,

it is important to note that different types of equip-

ment require distinct maintenance actions, sug-

gesting that the model could be further enhanced

by considering equipment-specific maintenance

strategies. Future research could focus on address-

ing these limitations to improve the model’s appli-

cability and effectiveness in practical scenarios.

5. Conclusion and Future Works

This work presents a mathematical model based

on Markov Process to support maintenance
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decision-making in PV systems. The model was

validated through numerical experiments that sim-

ulated different scenarios in PV systems. Results

demonstrated that the model is capable of ade-

quately planning preventive or corrective mainte-

nance actions by analyzing the current state of the

equipment and estimating its future state.

However, the scalability of the model was found

to be limited, as the solution space increases ex-

ponentially with the size of the system and the

planning horizon. To address this issue, a rein-

forcement learning approach is being developed to

deal with the so-called ”curse of dimensionality”.

Based on the analysis of the obtained results,

several improvements have been proposed to en-

hance the model’s applicability to real operating

scenarios. These improvements include incorpo-

rating various types of equipment into the mainte-

nance plan for the entire system, varying the tran-

sition matrices for each equipment and period, and

considering a wider range of maintenance actions.

Additionally, constraints related to the system’s

average interruption duration and frequency will

be included to improve the model’s performance.

Future research will focus on evaluating and im-

plementing these improvements.
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