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The maritime industry is witnessing profound changes in the way that their assets are operated. With the rapid 
advance of new generation telecommunication technologies, it is practicable to design systems that are deployed 
on the sea and operated remotely from a shore control center (SCC). This tendency has several advantages such 
as reducing the human exposure to harsh environments and reducing transportation costs of workers from/to the 
workplace. By doing so, the physical systems tend to have a higher level of automation, but the human operators 
are not removed from the loop at all; instead, they are moved to a different location and interact with the systems 
in a different manner. To achieve high standards of safety, recent research focused on understanding the 
operators’ tasks on SCCs and assessing the potential errors and the corresponding risks. However, as in other 
industries, obtaining human performance data is a challenging task. One promising alternative is to use training 
simulators for this purpose. Aiming at contributing to the knowledge of these applications, this paper presents a 
discussion on the main challenges and interesting solutions regarding the use of simulators to collect human 
reliability data. 
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1. Introduction 
The exploration of coastal and oceanic 

waters can bring enormous economic benefits for 
the humanity but was always marked by 
significative difficulties. For instance, the 
production of oil and gas in deep and ultra-deep 
waters faces harsh environmental conditions, 
difficulty of access due to large distances from 
shore, and potential safety issues with 
significative consequences (Onugbolu et al. 
2012). The maritime shipping is another example 
of this trade-off as it contributes to a huge part of 
the international commerce while imposing 
important personnel, environmental, and financial 
risks.  

In response to these questions, the advent of 
new technologies related to robotics, data-signal 
transmission, and teleoperations offers interesting 
solutions to the stakeholders. Due to the complex 
challenges, the most popular solutions appear to 
be the semi-autonomous ones, where human 
operators are included in the loop to provide 
cognitive assistance and support to the decision-
making process (Shukla and Karki 2016; Wróbel, 
Gil, and Chae 2021). In this way, these 
sociotechnical solutions try to benefit from the 
best of two worlds: on one hand, the flexibility of 
human cognitive processes; on the other hand, the 
endurance of physical systems that can surpass 
harsh environments. 
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However, when employing human workers 
in the loop, the obtained flexibility does not come 
at no cost. As is already known in several 
industries, the natural variability of human 
performance can be associated with spurious 
modes of operation and potential chains of errors. 
Therefore, when designing the semi-autonomous 
operations and even the layout of remote-control 
rooms, it is important to consider the impact of 
human reliability matters. 

One of the main approaches to this issue is 
to apply the human reliability analysis (HRA). It 
comprises a vast set of techniques for the 
systematic identification and analysis of the 
causes, consequences, and contributions of human 
failures in sociotechnical systems (Mkrtchyan, 
Podofillini, and Dang 2015). One of the main 
areas of application relates to the development of 
probabilistic risk assessment to comply with 
regulatory needs. When normative requirements 
are not a question, HRA is still useful to provide 
insights regarding the uncertainties related to 
human performance and the main points of 
improvements in a given context. 

The knowledge about human reliability 
evolved considerably in the past four decades. 
Efforts from high-risk sectors (with honorable 
mention to the nuclear industry) provided 
advances in terms of modelling the human error 
phenomena, understanding of the cognitive 
processes, quantification of human error 
probabilities (HEP), and evaluation of factors that 
influence the human performance. These 
advances are traditionally grouped into three 
generations (Norazahar 2020; Ade and Peres 
2022). The exact definition and limits of each 
generation vary slightly among authors but are, 
nonetheless, useful for comprehending the main 
attainments along the time and what still needs to 
be done. 

Groth, Smith, and Moradi (2019) presented a 
thorough listing of the current requirements of 
third generation HRA methods, including aspects 
related to comprehensiveness, research base, 
adaptability, flexibility, and support to multi-
purpose applications. Particularly, regarding the 
research base, one of the factors that still impacts 
the quality of HRA usage is the lack of empirical 
human performance data. Most of the methods 
rely on the use of expert elicitation, which 
provides an interesting starting point for 
quantification methods but should be used with 

caution due to the inherent human biases and 
difficulties of dealing with probabilistic reasoning 
(Caverni, Fabre, and Gonzalez 1990; Kahneman 
and Tversky 2013). 

One alternative to improve the empirical 
base for human performance data collection is 
related to the use of simulators. In several 
domains, the simulators are typically used to the 
training of human operators. Several aspects of 
the real world are reproduced with a high level of 
fidelity, serving as a fair basis for what the human 
operators should expect in their daily routines or 
emergency scenarios. There are already initiatives 
in the nuclear industry related to development of 
databases and data collection frameworks based 
on the observations of activities executed at 
control room simulators – e.g., the Scenario 
Authoring, Characterization, and Debriefing 
Application (SACADA) database (Chang et al. 
2014), and the human reliability data extraction 
(HuREX) framework (Jung et al. 2020). 

Acknowledging the importance of the data 
gathering questions discussed above, this paper 
presents a discussion towards the use of 
simulators to gather human performance data for 
the application of HRA on the domain of 
maritime remote operations. The main content is 
divided into three parts. Section 2 presents a 
discussion on how to choose the right type of 
simulator; section 3 discusses the costs of 
constructing and maintaining a simulator; finally, 
section 4 addresses the data validity questions. 

2. Choosing the right type of simulator 
A simulator is a piece of equipment that is 

designed to represent real conditions (Cambridge 
Dictionary 2022). The representation is limited 
and capable of reproducing only selected aspects 
of the real physical system. Consequently, when 
performing training activities or observing the 
performance tendency in each scenario, the users 
should be aware that some aspects of the reality 
may not be reproduced with fidelity. 

Despite these limitations, the use of 
simulators has beneficial outcomes in several 
industries, such as offshore (Wilkinson 2016), 
healthcare (Kirkman et al. 2014), aviation (Hays 
et al. 1992), and nuclear (Joe and Kovesdi 2021). 
This is because the simulators are developed to 
represent only the useful aspects of the physical 
system or process of interest. Thus, the applicants 
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can achieve the specific training objectives or 
observe the phenomena of interest. 

A reasonable first step to successfully apply 
simulators to any field of application is the 
selection of an adequate type of equipment, 
including hardware and software features. The 
International Atomic Energy Agency (IAEA) 
provides an interesting classification of several 
simulator types for nuclear power plant control 
rooms, which is useful to understand the variance 
of fidelity and complexity among the most 
common options (IAEA 1998; 2004): 

• Full scope simulator: a simulator that 
incorporates detailed modelling of the 
physical systems and a replica of control 
room operating consoles. Given their 
specificities, the full scope simulators can be 
used for personnel training of a specific 
plant. 

• Part task simulator: a simulator developed to 
train operators on specific aspects of the 
system. The specific phenomena may be 
simulated more accurately than in a full 
scope simulator. Examples include the 
startup of diesel generators and operation of 
other plant components. 

• Basic principle simulator: a simulator 
dedicated to demonstrating and illustrating 
the main principles behind the physical 
system. It is useful to support trainees on 
learning the fundamental operations. The 
human-machine interface can be provided by 
simple desktop computers or equivalent.  

• Compact simulator: a simulator that provides 
means to train procedures on a simplified 
form. The modelling depth and fidelity are 
equivalent to a full scope simulator, but the 
human-system interface (HSI) is simplified 
(e.g., computer-driven displays with 
touchscreens, mouse-control of graphical 
equivalents of typical controllers). 

Therefore, the types of simulators vary 
essentially in terms of costs and validity for a 
given purpose – which are further discussed in 
sections 3 and 4, respectively. A full scope 
simulator has an elevated degree of fidelity, which 
can be useful for training operators for a specific 
type of plant. However, it is expensive and may 
not always be the best option depending on other 
use objectives. If an analyst wants to study 

different HSIs, a generic compact simulator with 
reprogrammable displays can be a better option. 

3. Costs of construction and operation 
When selecting a simulator concept, the 
development of cost-benefit analysis is essential 
to ensure that the research or training objectives 
can be achieved without unnecessary expenses. 
To do this, it is important to analyse the expected 
costs carefully for each option available. 

It is useful to divide the expected costs in 
two types: capital expenditures (CAPEX) and 
operational expenditures (OPEX). The CAPEX 
accounts for the resources used to acquire and 
adapt assets such as properties and equipment. 
The OPEX is related to the expenses to maintain 
the facility during its lifetime. Table 1 presents an 
overview of the main capital and operational 
expenditures related to the construction and 
operation of a simulation center. It is based on the 
comprehensive listing presented by Kurrek and 
Devitt (1997) and is expanded with other common 
costs inferred from typical applications. 

Table 1. Overview of CAPEX and OPEX for 
simulator construction and operation 

Capital expenditures 

� Equipment (e.g., computers, basic 
software, server, keyboards, levers, 
joysticks, audio devices). 

� Property (i.e., rooms to deploy the 
equipment). 

� Property renovation and adaption. 
� Development of simulator software. 
� Personnel costs. 

Operational expenditures 

� Administration. 
� Rent. 
� Equipment maintenance. 
� Property maintenance. 
� Internet, energy, and water bills. 
� Maintenance of software developed in 

house. 
� Third-party software license. 
� Insurance. 

 
The content of Table 1 mainly reflects the 

costs associated with full scope simulators, which 
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contains important expenses related to property 
acquisition (or rental) and management, in 
addition to significant equipment costs. These 
costs may not be applicable to other concepts, 
such as the basic principle and compact 
simulators. 

Furthermore, it is important to note that 
some simulation centres can generate revenues as 
they are able to provide courses and corporate 
trainings (Kurrek and Devitt 1997). Therefore, 
even if the center is not 100% sustainable as 
would be desirable in a non-profit organization, it 
is possible to reduce the net operating costs 
depending on how the simulator is used. 

 

4. Validity of data obtained from simulator 
studies 

The proposal of using simulators to collect human 
performance data aims at overcoming the 
challenge of quantifying HRA models. The data 
scarcity inherent to this field of study as well as 
concerns about the potential subjectivity of 
experts’ opinions motivate the search for 
empirical and statistically relevant data sources. 
However, at this point, important questions 
emerge. How representative is the data collected 
in simulators? Furthermore, is it feasible to collect 
statistically significant samples? 

4.1. Data fidelity 
The simulators represent the elements of the real 
world in a limited way to a lower or higher degree 
– see Section 2. Despite the important 
contributions to achieve training objectives, not all 
aspects of the operational conditions to be faced 
by human workers are reproduceable with fidelity. 
For example, the simulation of offshore 
emergency situations can be performed using a 
desktop-based software capable of creating 
credible virtual emergency scenarios (Musharraf 
et al. 2019). In this way, the trainees are expected 
to gain knowledge about emergency procedures, 
therefore achieving the training objectives. It is 
also possible to collect data regarding human error 
probabilities and performance shaping factors 
(PSFs) using evidence from such experiments, as 
demonstrated by Musharraf, Khan, and Veitch 
(2019). PSFs are elements internal or external to 
the operators that may influence their performance 
(e.g., fatigue, training, human-machine interface, 
environmental conditions). Still, the human 

operators that take part in the simulations will 
obviously not be exposed to the dangers of real 
emergency conditions, which could change their 
actual responses. There are natural limits for what 
is in fact observable in simulators. 

When viewing the simulators as a source of 
information to HRA, another important aspect to 
take into consideration is the variance of data 
collected from different installations. As an 
example, let’s take hypothetical simulators for 
shore control centres (SCC) of maritime 
autonomous surface ships (MASS). Different 
organizations may develop several SCC 
simulators with the purpose of training their 
operators to operate specific classes of MASS. At 
a high level of abstraction, we could say that all of 
these simulators pertain to the same domain of 
application and, therefore, data from all of them 
could be grouped in a large database on a joint 
industry project. From another point of view, at a 
lower level of abstraction, each installation may 
have its own particularities – e.g., HSI, ship types 
– and it could be argued that the data points 
collected from multiple installations can be 
incompatible among them. 

Therefore, the analysts developing HRA 
should always be careful when using data from 
databases to ensure that the degree of 
representativeness is adequate. It may be 
interesting to group data from different 
installations in some cases but only if they have 
similar features that make it reasonable to do so. 
The main objective behind the grouping of 
different databases is generally to increase the 
sample size, allowing an improvement of the 
statistical representativeness. There are interesting 
ways in which this can be achieved, as will be 
discussed in the next section. 

4.2. Statistically significant data 
The use of simulators to gather human 
performance data faces has an important problem: 
each simulation trial is generally expensive and 
time consuming. Consequently, it is difficult to 
collect statistically significant amounts of data to 
quantify the HEPs. Furthermore, when trying to 
observe the combinations among PSF states to 
understand their joint effect on the human 
performance, it is also hard to obtain significant 
samples. How to overcome this challenge? 

Regarding the quantification of HEPs, it is 
useful to define a convenient level of abstraction 
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to perform the data collection. The traditional 
HRA models typically divide the human tasks in 
several levels of abstraction that range from high-
level tasks to more elementary cognitive 
activities, as illustrated in Figure 1 (the specific 
nomenclature may vary slightly among different 
groups of authors). At the lowest level, types of 
human errors are appended to each task, 
accounting for the different ways that the failure 
of a cognitive activity may occur. 

When quantifying the HEP for a given task, 
Eq. 1 is commonly adopted, where  is the 
human error probability for the -th task,  is the 
number of opportunities to perform the task, and 

 is the number of errors observed. 

  (1) 

As pointed out by Jung et al. (2020) the 
number of opportunities to observe a given task is 
relatively low for high-level tasks and is higher 
for low-level tasks and elementary cognitive 
activities. Again, using the tasks performed in a 
SCC for MASS, the “high-level task” of avoiding 
a collision is expected to be observed only a few 
times in a simulation campaign; yet the cognitive 
activities of information acquisition, decision-
making, and execution of steering commands are 
observed several times. Therefore, it is easier to 
ensure significative quantity of data if the 
observations are made in a lower level of 
abstraction, since there are more observation 
opportunities. However, to do this, it is necessary 
to ensure meaningful definitions for these low-
level human tasks, whose should also be 
replicable among different studies. 

Another concern refers to the collection of 
data to inform the influence of PSFs on the human 
performance. When trying to account for the 
influence of PSFs on the HEPs, the number of 
potential scenarios (defined here as a combination 
of PSF states) grows exponentially with the 
number of PSFs and their states. Taking the 
simplified model of Figure 2 as an example, we 
have a human task that is influenced by three 
PSFs. Each PSF has two possible states. The total 
number of scenarios is 2³ = 8. If one more PSF 
with two states is added, the number of possible 
scenarios doubles, as we would have 16 
combinations. If one of the three PSFs had three 
states, the number of scenarios would increase 
significantly too – from 8 to 12 possibilities. 

If ensuring a significant number of 
observations for the HEP estimation alone is a 
challenging task, contextualizing the HEPs along 
with the PSFs is even more expensive and time 
consuming. Therefore, we need also to find a 
method of ensuring that the gathering of PSF data 
points is also consistent and feasible. 

 
 

 

Figure 1. Levels of abstraction for HRA tasks and 
types of error 

 
In this regard, Groth and Mosleh (2012) 

present a data-informed PSF hierarchy for model-
based HRA, which addresses important 
quantitative issues. Firstly, the idea of 
standardizing a PSF set is important, since it 
facilitates the data gathering from different 
sources, using similar definitions. In the same 
sense, each PSF must have objective direct or 
indirect metrics, allowing for the removal of 
subjectivity in the data gathering process. 
Furthermore, since the PSF set is hierarchic, it 
could be expanded for detailed qualitative analysis 
and collapsed for quantitative analysis. 

If the data gathering is guided by some type 
of modelling framework, it is also possible to 
reduce the effort by assuming plausible modelling 
hypotheses. For instance, if a Bayesian network 
model is used and it is reasonable to assume that 
the parent nodes of a child node are independent, 
then the noisy-or gate is an interesting option. In 
this case, only  values are sufficient to fulfil the 
conditional probability tables (CPTs), where  is 
the number of parent nodes (Chen and Huang 
2014). Another alternative is to collect data values 
only for extreme combinations of PSFs (e.g., all 
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PSFs in their worst or best states) and use them as 
anchors to apply interpolation rules (Mkrtchyan, 
Podofillini, and Dang 2016) – see Figure 3. This 
approach presupposes that the influence of parent 
nodes states on the child nodes is strictly positive 
– i.e., an improvement on the PSF states only 
increases the success probability of a task, while a 
deterioration on the parent node states only 
reduces the probability of success. 

 
 

 

Figure 2. Example of HRA model with three 
PSFs and one human task 

 

 

Figure 3. Interpolation of Bayesian network 
CPTs using anchors (Abreu et al. 2022) 

5. Conclusion 
The use of simulators can be an important 

tool to develop safer remote maritime operations. 
In addition to their inherent capabilities of 
providing operator training, they can serve as a 
source of human performance data, allowing 
improving the basis for estimation of HEPs and 
the contributions of PSFs. Through these 
resources, we may achieve continuous 
improvement and design safer systems. However, 
there is no panacea when it comes to the 
quantification of HRA models. It is important to 
acknowledge the limitations and challenges 
involving the use of simulators and try to deliver 
ways to overcome them. 

This paper presented a brief discussion of 
what are some of the main concerns that should be 
addressed: a) the selection of appropriate 
simulator concepts to support the HRA studies; b) 
the costs of constructing and maintaining 
simulation facilities; and c) the validity of data 
gathered from simulation trials. While 
recognizing that each problem is complex in its 
own ways, the authors hope that the discussion 
presented above serves as a first step to HRA 
practitioners who are challenged by the 
emergency of semi-autonomous systems. 
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