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Machine learning algorithms for anomaly detection often assume training with historical data gathered under normal
conditions, and detect anomalies based on large residuals at inference time. In real-world applications, labelled
anomaly-free data is most often unavailable. In fact, a common situation is that the training data is contaminated
with an unknown fraction of anomalies or faults of the same type we aim to detect. In this case, training residual-
based models with the contaminated data often leads to increased missed detections and/or false alarms. While
this challenge is rather common, in particular in technical fault detection setups, it is only rarely addressed in the
scientific literature.
In this paper we address this problem by introducing a data refinement algorithm that is capable of cleaning the
contaminated training data in a fully unsupervised manner, and apply the algorithm to a problem of fault detection in
grid-scale solar power plants. The data refinement framework is based on an original physics informed deep learning
classification algorithm that would require healthy data as its input, in order to generate from it synthetic faulty data
and train a binary classifier. We show that in order to achieve high fault detection performance, it is essential to
avoid contamination of the original healthy data with unlabelled faults. To this end, we introduce an algorithm that
isolates the healthy data in a fully unsupervised manner prior to training the binary classifier. We test our algorithm
with field data from an operational solar power plant which includes contamination of unlabelled faulty data and
demonstrate its high performance. In addition, we demonstrate the robustness of the proposed refinement method
against an increasing fraction of faults in the training data.

Keywords: Unsupervised Machine Learning, Deep Learning, Anomaly Detection, Data contamination, Data Refine-
ment, Predictive Maintenance, Physics Informed Machine Learning, Solar Power.

1. Introduction

One of the central challenges in operational de-

ployment of machine learning (ML) algorithms

for fault detection and isolation is the scarcity of

labelled data from faulty conditions Fink et al.

(2020). This challenge is typically addressed by

applying anomaly detection algorithms that rely

on having anomaly-free training data. A model is

trained to predict the system behaviour under nor-

mal (healthy) conditions, and anomalies or faults

are detected by their dissimilarity to the predicted

behaviour. Common examples for such residual-

based models are various types of autoencoder

neural networks (see for example Munir et al.

(2018); Audibert et al. (2020); Provotar et al.

(2019); Thill et al. (2021); Ferdousi and Maeda

(2006); Zhang et al. (2019)). These approaches

are often referred to as ”unsupervised anomaly

detection” despite the fact that partial supervision

is assumed in terms of healthy labels. Thus, a

more appropriate term for this family of methods

would be ”semi-supervised learning”.
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Another approach, gaining attention recently,

is to exploit physical knowledge in combination

with ML models in order to augment the healthy

data with synthetically generated faults Karni-

adakis et al. (2021); Frank et al. (2016). Gener-

ating an unlimited number of faults is attractive,

as it allows the use of supervised classification

methods.

Both of the aforementioned approaches to deal

with the scarcity of real labelled faults require

access to labelled healthy data. In one case, the

healthy data is used for training normal state pre-

diction models, and in the second case it is used

for the synthetic generation of faults.

However, in an operational industrial environ-

ment there is usually no guarantee that labelled

fault-free data with no (known or unknown) fault

contamination is available for training. In fact, the

most common situation is the one with no labels

at all. In this case the only viable solutions are

truly unsupervised anomaly detection algorithms.

Despite the high relevance of this topic, very little

research has been carried out in this direction until

now Beggel et al. (2020); Zhou and Paffenroth

(2017); Berg et al. (2019); Yoon et al. (2021); Qiu

et al. (2022) .

In this paper we suggest a truly unsupervised

fault detection algorithm based on a physics-

informed deep learning (PIDL) approach. The

suggested framework includes a two step proce-

dure. In the first step we apply the PIDL on all

available data, which is assumed to contain both

healthy and faulty samples. We develop a refine-

ment score that allows a clear separation between

the healthy and faulty samples of the original data.

After the data refinement, we retrain the same

PIDL algorithm using only the refined fault-free

data. We demonstrate the approach on field data

from an operational solar power plant, and focus

on the detection of faults in the solar tracking

system.

Tracker faults are common in solar power

plants. Solar trackers are rotating devices that are

used to keep the solar panels mounted on them

at an optimal angle considering the sun position

at any given moment Racharla and Rajan (2017).

The most common fault mechanism of the track-

ing system is that a tracker gets stuck at a cer-

tain rotation angle instead of tracking the sun.

In this case, all solar panels that are mounted

on a faulty tracker suffer from power production

losses compared to the optimal production of the

healthy system. The effect of a tracker fault on the

daily power production profile of a solar string

(typically containing a multitude of panels) can

strongly vary not only with the solar position but

also with varying weather conditions.

In a previous publication we showed that PIDL

is a powerful method to detect tracker anomalies.

The approach uses healthy power profiles from

field data and corrupts them based on a physical

model in order to generate power profiles corre-

sponding to tracker faults. The augmented data,

containing field healthy samples and synthesized

faults, is used to train a binary classifier, assigning

anomaly scores to the daily power profile of each

solar string.

In this paper we report the extension of this case

study to a truly unsupervised setup where fault-

free field data is not necessarily available. Instead,

the starting point of the present study is a data

set which may or may not contain a considerable

fraction of contamination of faults of the same

type we wish to detect.

We evaluate the performance of the algorithm

on contaminated field test data, and show that it

significantly outperforms the approach of ”blind”

training on the contaminated data. In addition we

perform tests with various contamination ratios,

introduced by synthetic generation of faults, in

order to evaluate the robustness of the method

towards an increasing number of faults in the

training data.

The contribution of this paper is the following:

• We tackle the problem of truly unsuper-

vised anomaly detection, that is, not re-

lying on access to anomaly-free training

data. This topic is rarely addressed in the

scientific literature, despite its high rele-

vance for most anomaly detection setups

and in particular, across all prognostics

and health management (PHM) applica-

tions.



1739Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

0.0

0.5

1.0

N
o
rm

.
P
ow

er H
ea
lth

y

12:00

Time of day

0.0

0.5

1.0

N
o
rm

.
P
ow

er

12:00

Time of day

12:00

Time of day

12:00

Time of day

12:00

Time of day

12:00

Time of day

F
a
u
lty

Fig. 1. Daily power profiles from an operational solar power plant. The normalized power is plotted against the
time of the day. Upper row: Healthy profiles (no tracker fault). Lower row: Faulty profiles (with known tracker
faults).

• We develop an end-to-end framework

for solar-tracker fault detection which

is applicable to mixed normal/abnormal

data with no labels at all. This frame-

work is inherently a physics-informed

machine learning approach. It can be eas-

ily extended to other application fields in

which abundant healthy data is expected

to be available, and the fault mechanism

can be modeled using a simple physics-

based transformation on the healthy data.

2. Description of the use case

The proposed unsupervised data refinement

method is demonstrated here on a real field data

set from a solar power plant, with the aim of

detecting faults in the solar trackers. The data

set contains a single variable, the output power,

measured at each solar string in a grid-scale power

plant. In this power plant, each solar tracker car-

ries 5 solar strings, whose power production is

affected in case the respective tracker is faulty.

The initial data set D0 contains daily power

profiles measured from healthy solar strings as

well as from strings that are mounted on faulty

trackers. Some examples of such (normalized)

power profiles are shown in Figure 1. The upper

row displays healthy profiles and the lower row

faulty profiles. Due to the strong heterogeneity in

weather conditions as well as individual degrada-

tion history of the solar strings, the profile shapes

are very heterogeneous and it is not a trivial task

to distinguish between the healthy and the faulty

ones.

In the following we describe the details of an

unsupervised data refinement (USDR) approach

that enables the detection of faulty daily power

profiles at the single string level at the end of each

day.

3. Method

We assume an initial field data set D0 = {x0i}Ni=1

containing N unlabelled normal as well as abnor-

mal samples. The goal of our method is to train

a physics informed deep learning (PIDL) binary

classifier, that will be able to detect abnormal

samples in an unseen test data Df .

Given the initial unlabelled field data set D0,

the USDR method includes the following steps,

as depicted in Figure 2:

(1) Data refinement (left frame in Figure 2).

(2) Retraining the classifier on the refined data for

anomaly detection (right frame in Figure 2.

Both steps are executed using a PIDL algorithm

which is itself comprised of (i) physics informed

(PI) data augmentation and (ii) training a deep

learning (DL) classifier of the augmented data.

In the refinement step (1), the classifier is used

to obtain a refinement score for each sample of

the initial data set. Based on the refinement score,
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Fig. 2. A framework for unsupervised fault detection using physics informed deep learning (PIDL). Each time
series sample x0i(t) out of an unlabelled training set is assigned a refinement score sref,i (left panel). The refinement
score for sample i is calculated based on the difference in classification outputs between the original sample x0i(t)
and its corrupted counterpart xci(t), obtained by applying the physical model fphys. All samples with sref,i > 0.5
are assigned a ”healthy” label and are used to train a PIDL classifier (right panel).

part of the samples are selected as normal and

are propagated to the next step (2) of training the

anomaly classifier.

The next subsections describe all of the above

steps.

3.1. Physics Informed Data
Augmentation

In our previous work Zgraggen et al. (2022)

we described an algorithm that detects tracker

faults by classifying the daily power profiles of

the individual solar strings. The starting point of

the algorithm is a data set with labelled healthy

power profiles from an operational power plant.

The (presumably healthy) profiles of the field

data {x0i(t)}Ni=1 are then corrupted by a physical

model fphys in order to simulate the effect of

various possible tracker faults and to generate a

set of synthetic faulty profiles {xci}Ni=1 (subscript

c stands for ”corrupted”). A faulty profile xc(t) is

generated from a healthy profile x0(t) using the

equations

xc(t) = cp [(1− γ)g(θ0, θ
∗
i (t)) + γ]x0(t)

g(θ0, θ
∗
i (t)) =

cos θ0 · fIAM(θ0)

cos θ∗i (t) · fIAM(θ∗i (t))
.

(1)

with fIAM(θi) = 1− b0(1/ cos θi − 1) and where

θ∗i (t) is the optimal tilt angle of the tracker at time

t, θ0 is the stuck angle of the faulty tracker, b0
and γ are model parameters estimated empirically

using the data, and cp is a degradation loss coef-

ficient. By sampling the values of θ0, γ, b0 and cp
from uniform distributions within realistic ranges,

we generate a rich collection of possible faulty

profiles. For details of the physical model we refer

the reader to Zgraggen et al. (2022).

The empirical-physical model of the fault

mechanism is used to augment the normal data

set, such that it now contains both healthy and

faulty power profiles. Each daily profile is a time-

series of size 96 (due to a 15 minute resolution).

At a next step, the augmented data set, contain-

ing balanced healthy and faulty samples is pre-

processed by subtracting from each power profile

the 0.9 quantile over the entire plant at any given

moment in time. The normalized profiles are used

to train a 1d-CNN classifier fcl that assigns an

anomaly score sAD to each daily profile. This

allows to detect faulty strings at the end of each

day (which is the relevant time resolution for deci-

sion making in practice). The CNN contains three

one-dimensional convolutional layers followed by

two fully-connected layers, with a total of around

30’000 trainable parameters. The network archi-

tecture was optimized using a grid search to tune

the number of layers and filters and the learning

rate.

In our previous work the PIDL algorithm was

shown to outperform a pure data driven approach

based on a convolutional autoencoder, both in

terms of accuracy and in terms of robustness of

the outcomes Zgraggen et al. (2022).
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Here we extend the previous framework to a

fully unsupervised anomaly detection scenario.

The crucial difference is that we do not assume

any prior knowledge about the initial data set D0,

which can now include a non-negligible ratio of

faulty power profiles in addition to the healthy

ones, also known as contamination ratio rc. Since

this is the common scenario in real applications,

we use a field data set of one year from a grid-

scale solar power plant as our starting point for

training the fault detection algorithm.

3.2. Unsupervised Data Refinement

The use of the original PIDL classification al-

gorithm described above assumes a data set of

healthy (normal) samples, from which faulty (ab-

normal) samples can be synthesized. Here, on the

other hand, we assume an initial data set with

contaminated data, containing healthy and faulty

samples. In order to be able to use the PIDL

classifier we apply a step of data refinement prior

to the classification. The data refinement step itself

utilizes the same PIDL algorithm and applies it

”blindly” on the initial contaminated data, using

the resulting score to extract meaningful infor-

mation about each sample. This physics informed

(PI) unsupervised data refinement (USDR) step is

shown as the left frame in Figure 2.

Note that we use the term ”unsupervised” even

though we apply a standard classification frame-

work. The reason is that we use the classifier

assuming that the training data is partially mis-

labelled due to fault contamination, such that its

true labels are unknown. The only underlying as-

sumption is that the majority of the original data

belongs to the normal (healthy) class, which is

a standard assumption in any anomaly detection

task.

The essential step of the data refinement is

aimed at assigning a refinement score sref,i to

each sample x0i(t) of the unlabelled data set D0.

This score is an indicator of the likelihood of

this sample to be healthy. At the next step only

samples with a high likelihood to be healthy are

used to retrain the PIDL classifier. In the following

we explain the individual steps of this approach.
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Fig. 3. Examples for physics-informed data corrup-
tion. Left: a daily power profile of a healthy solar
string before (black) and after (red) the synthetic fault
generation. Right: the same for a faulty string. s0 and sc
are the classification scores before and after corruption
respectively.

3.2.1. Refinement scores

We denote an arbitrary original sample (drawn

from the field data D0) as x0i(t), where t =

1...96 is the discretized time of the day. Using

the physical model fphys we can now corrupt this

sample to generate the corrupted power profile

xci(t). We note that if the original sample x0i(t)

is healthy, applying the physical corruption model

to it generates a sample xci(t) with a character-

istic tracker fault. An example for such a sample

can be seen in the left panel of Figure 3, where

the original (black) and the corrupted (red) pro-

files are shown. However, since the data D0 is

contaminated with unlabelled faults, the original

sample may also be faulty. In this case the physical

corruption model applied to it generates a power

profile xci(t) which is no longer characteristic

to a faulty string, nor to a healthy string. The

right panel in Figure 3 displays an example of the

original (black) and corrupted (red) samples in a

case where the original sample is already faulty.

Both original and corrupted samples are used

to train the refinement classifier f
(0)
cl . This binary

classifier is trained to predict 0 for x0i(t) and 1

for xci(t) (even though some of the samples may

be mislabelled). After training the classifier, we

evaluate the predicted classification scores of all

samples in the training data itself, both before and

after corruption. For each sample, we denote the
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Fig. 4. Fault detection performance. Precision recall plots for field test data of (a) the proposed PI USDR method
(b) a PI classifier trained blindly on the contaminated data (c) a PI classifier trained on labelled clean data for
reference. For each model we show the results of 5 training runs and their mean (thick curve). The AUC of the mean
curve is given in brackets.

score of the original (uncorrupted) sample x0i(t)

as s0i, and the score of its corrupted counterpart

xci(t) as sci. We then define a new refinement

anomaly score for each sample based on the dif-

ference between the two scores:

sref,i = sci − s0i (2)

A healthy sample i is likely to obtain a high

refinement score (close to 1) whereas a faulty

sample obtains a low refinement score (0.5 or

lower). The reason behind it is the following: if the

original sample x0i(t) is healthy, it should get a

low classification score s0i ∼ 0. When corrupting

it, we generate a synthetic faulty profile xci(t)

which should obtain a high classification score

sci ∼ 1 (see left panel of Figure 3). The difference

between them is expected to be sref,i ∼ 1. How-

ever, if the original sample x0i(t) is faulty, it gets

a high classification score s0i ∼ 1. Corrupting it

will generate a profile xci(t), that is expected to

be far from the typical healthy samples, and get

a classification score 0.5 < sci < 1 (see right

panel of Figure 3). The score difference in this

case is expected to be sref,i ∼ 0, and may also

be negative.

3.2.2. Data refinement

We clean the contaminated data set D0 by setting

a threshold on the refinement score at 0.5, and

removing any original sample x0i(t) with sref,i <

0.5 from the data set, assuming that this sample is

likely to be faulty. The refined data set, denoted by

D contains now only samples which are likely to

represent healthy strings.

3.2.3. Retraining with refined data

The selected power profiles x0i(t) are now fed

into the physical model fphys in order to generate

faulty profiles xci(t). As a result we obtain an

augmented data set with samples x0i(t) and xci(t)

that are likely to be healthy and faulty respectively.

The resulting augmented data set is fed into the

CNN classifier fcl as training data. The trained

model can now be used to infer the anomaly scores

sAD,i for new unseen data. The anomaly scores

sAD,i range between 0 (healthy) and 1 (faulty).

Depending on the selected threshold, we obtain

different fault detection outputs. To evaluate the

outcomes and compare models we typically look

at precision-recall curves, which are the most in-

formative for highly unbalanced data, and calcu-

late the area under them (AUC) as a performance

metric.

4. Results

To evaluate the performance of the unsupervised

data refinement (USDR) method we use test data

of 18 Months from the same operational solar

plant used for training. During this year we manu-

ally labelled 417 daily profiles as clearly suffer-
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Fig. 5. The effect of the contamination ratio (CR) of the training data on the performance of the USDR algorithm.
Panels (a)-(d): distributions of the classification scores s0i and sci of the original and corrupted training data samples
respectively for CR of 5%, 10%, 20% and 30%. Panels (e)-(h): precision-recall curves (PRCs) trained with the
USDR algorithm for the same CR values. Panels (i)-(l): baseline PRCs for blind training with the contaminated data
for the same CR values. Each PRC panel contains 5 training repetitions and their mean (thick curve), with AUC of
the mean in brackets. All PRCs are evaluated on the same field test set.

ing from tracker faults, and 334’176 profiles as

healthy. Other known fault types or unclear cases

were filtered out from the training and the test

data.

Figure 4(a) shows the precision-recall (PRC)

plot achieved by the USDR framework. In order

to evaluate the reproducibility of the algorithm we

show the results of 5 training repetitions and their

mean. The result is compared with two different

baselines. In panel (b) the ”blind” baseline, train-

ing the classifier blindly without refining the train-

ing data. In panel (c) we show the results of the

ideal case, in which the data is manually cleaned

prior to training, such that it contains exclusively

fault-free samples, with no contamination.

We observe that the USDR framework is clearly

superior to blind training with contaminated data,

with AUC = 0.95 compared to AUC = 0.92 of

the mean of all blind baselines. More importantly

we notice that the variability between training

repetitions of the same model is very large in

case of blind training as opposed to the robust

outcomes of the refinement method USDR. Some

of the blind training repetitions are severely im-

paired by the fault contamination of the training

data whereas other are less affected. Both the fault

detection performance and the reproducibility of

the USDR framework are close to the ideal model

trained with fault-free data (AUC = 0.95). For

practical applications reproducibility is a central

performance metric that indicates the robustness

of the model towards random changes in the train-

ing data or stochastic properties of the training

process.

4.1. The effect of the contamination ratio.

Similar to other unsupervised anomaly detection

methods, the performance of the USDR method
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strongly depends on the initial contamination ratio

of the data, that is, the fraction of faulty samples in

the initial data set. In order to test the sensitivity

of the suggested method towards the contamina-

tion ratio, we introduced a growing fraction of

faults into the initial data set by randomly select-

ing healthy samples and synthetically corrupting

them. In this way we could control the effect of the

contamination ratio without reducing the number

and thus the representativeness level of the healthy

samples. For each contamination ratio we applied

the USDR framwork and evaluated the PRC per-

formance for the same test data set, containing 18

months of field data of an operational solar power

plant.

Figure 5 displays the results of the comparison

for 4 different contamination ratios between 5%

and 30%. Panels (a)-(d) in the upper row of the fig-

ure display the histograms of the anomaly scores

s0i (blue) and sci (red) of the samples before

and after corruption respectively. As expected, we

observe a majority of s0i ∼ 0 with a smaller

peak at 0.5 < s0i < 1 which grows with the

growing contamination ratio. These are the faulty

samples of the initial data. After corruption, the

majority earns the score sci ∼ 1, with a tail

towards sci = 0 that becomes more significant as

the contamination ratio grows.

Panels (e)-(h) in the middle row display the

PRC curves achieved by the USDR framework

for the different contamination ratios. Using the

data refinement framework, we observe almost

no performance deterioration up to contamination

ratio of 30%. The AUC of the 5-run mean is given

in brackets in each panel.

Comparing the results to the blind training

baseline in panels (i)-(l), it is evident that the

refinement step leads to a significant improve-

ment of the fault detection performance. More-

over, the suggested method obtains remarkably

reproducible results also at high contamination

ratios. We note that a contamination ratio of 20%

anomalies in the initial data is considerably higher

than any realistic scenario for the use case we

consider.

5. Conclusions

Anomaly or fault detection tasks are typically ad-

dressed with semi-supervised residual-based algo-

rithms, which assume the availability of fault-free

training data. In real applications this assumption

is rarely valid. Thus, there is a need for truly

unsupervised anomaly detection methods, that are

applicable to contaminated training data. Despite

their high relevance, such methods are only rarely

addressed in the scientific literature.

In this paper we presented a framework for fully

unsupervised anomaly detection using physics-

informed deep learning, introducing a data refine-

ment step that cleans the contaminated data prior

to the anomaly classification step. We demon-

strated the performance of the framework on field

data from an operational solar power plant with

tracker faults. We showed that whereas training

blindly with the contaminated data severely im-

pairs the performance, the suggested framework

is able to reach high detection performance and

robustness, which are comparable to the ideal (but

rather unrealistic) case in which fault-free training

data is available.

Our future research will validate the results

against other approaches for anomaly detection

with contaminated data. In addition we will extend

the applicability of the framework for further fault

types, as well as for data sets with mixed fault

types in order to allow fault diagnostics.
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