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One of the biggest levers for reducing the cost of wind power generation is to minimize the replacement frequency of
large components. To address this need, researchers have focused on the development of real-time health monitoring
of component to perform condition-based maintenance. In a previous work, a fault detection solution based on multi-
turbine indicators built from automatically generated linear models has been presented and validated on a converter
fault case. However, the application of this method on other faults revealed weaknesses in the detection performance,
making the solution unreliable. To address these issues, the solution proposed in this study is to consider an ensemble
method to automatically generate a set of tri-variable linear models predicting the evolution of a common variable.
The linear models are constructed using a constrained greedy selection algorithm, providing unique sets of model
variables. From these models, residual-based multi-turbine health indicators are constructed, and a mean linear
residual is considered, computed as the mean of seven different indicators. The comparative analysis of these
indicators, carried out based on the area under two receiver operating characteristic curves on two fault cases, shows
that the use of a mean linear residual computed from a set of linear residuals significantly improves the global
detection performance, and thus the reliability of the condition-based maintenance process under development.

Keywords: Wind energy, Linear multi-variable models, Ensemble methods, Residual-based fault detection, Intelli-
gent variable selection, Automatic model generation

1. Introduction

With the rapid expansion of French wind farms in

recent years, the number of component replace-

ment operations is increasing, resulting in a rise

in the levelized cost of energy (LCOE). In order

to reduce corrective maintenance operations (and

thus reduce the LCOE), the solution developed in

the literature consists in moving from a periodic

maintenance based on a calendar to a condition-

based maintenance (or CBM) based on a real-

time monitoring of the components’ health, al-

lowing the planning of preventive maintenance

operations, intervening at a minor stage of a fault,

when the wind turbine is still in normal operation.

Most of the CBM methods proposed in the

literature for wind turbines are based on super-

visory control and data acquisition (or SCADA)

data, whose sensors are cheap, in large num-

bers, and already installed on the various com-

ponents of a wind turbine (Márquez (2020)).

The health status is then modeled by a resid-

ual signal, measuring the deviation between a

measured value and a value estimated by a

model (Maldonado-Correa, Martı́n-Martı́nez, Ar-

tigao, and Gómez-Lázaro (2020), Tautz-Weinert

and Watson (2017)).

In a previous work (Raymond, Lebranchu,
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Bérenguer, and Charbonnier (2022)), a data-

driven method to automatically generate linear

model for the fault detection of wind turbine

components was presented and applied to a con-

verter fault case, and showed encouraging results.

This method relies on a forward variable selec-

tion algorithm to generate simple linear mod-

els. This choice of modeling strategy is made

because it allows robustness to industrial con-

straints, regarding data availability and noise.

This approach also has the advantage of provid-

ing interpretable models, for a low implementa-

tion cost, compared to neural network modeling

ones (Stetco, Dinmohammadi, Zhao, Robu, Flynn,

Barnes, Keane, and Nenadic (2019), Schlechtin-

gen and Ferreira Santos (2011))). The data-driven

fault detection method proposed has been de-

signed to be deployable at the scale of a fleet of

wind turbines: the generated models are applica-

ble to any component of any wind turbine tech-

nology. However, when applying this process to

different study cases, it was found that the health

indicators remain insensitive to certain faults.

To solve this issue, one solution is to to resort to

an ensemble approach to leverage the individual

detection performance of a set of health indicators

in order to improve the global performances.

Bagging and boosting are among the most pop-

ular ensemble methods. However, they are not

adapted to industrial data, as shown by Opitz and

Maclin (1999). Stacking methods, which consider

models from various classifiers (e.g. k-nearest

neighbors, support vector machine) to improve the

accuracy of the final model are a more relevant

solution in this respect (Lima, Blatt, and Fujise

(2020),Waqas Khan and Byun (2022),Yuan, Sun,

and Ma (2019)). Ensemble methods are very flex-

ible, and to achieve the requirements of modeling

accuracy, a very large number of models can be

considered, as in Pichika, Meganaa, Geetha Ra-

jasekharan, and Malapati (2022), which performs

a fusion of the three approaches mentioned above.

Thus, these study cases are not suitable for in-

dustrial use because they can require a high imple-

mentation and execution cost, and bring confusion

in the interpretation of the models by an expert

user. The non-detection of some faults is due to

the choice of variables made by the selection algo-

rithm: as the model generation process is based on

the estimation performance on healthy data, fol-

lowing the normal behavior modeling (or NBM)

approach ((Schlechtingen, Santos, and Achiche

(2013), Schlechtingen and Santos (2014))), it can

select regressors correlated to the estimated vari-

able during a fault, making the associated health

indicator insensitive to it. Thus, using a larger

number of variables in the model generation pro-

cess may be a way to solve the problem. This

would allow to take advantage of the diversity

of available SCADA database to capture different

faulty behaviors. The results of variable selection

algorithms depend on the ranking criterion of

the models used, and there are nowadays many

methods, summarized in the review Li, Cheng,

Wang, Morstatter, Trevino, Tang, and Liu (2018).

A solution to consider a greater diversity in the

variable selection would then be to modify the

ranking criterion of the algorithm used for vari-

ables selection. However, as the same model can

be optimal for several different criteria, nothing

guarantees that using different criteria will lead to

a greater variability in the selected variables.

In this study, an ad-hoc ensemble method, in-

spired by the stacking approach, to automatically

generate a set of tri-variate linear models, pre-

dicting the evolution of a same output variable is

proposed. The process is based on a constrained

greedy forward selection algorithm, generating

five unique linear models. Each model is made

different by forcing the variable selection algo-

rithm to use different input variables. An ad-

ditional model composed of variables linked to

the output one, but whose variations are not im-

pacted by wind turbine faults is also considered.

Multi-turbine health indicators are then built us-

ing these models, together with a signal mea-

suring the deviation of the variation of the vari-

able to be estimated with the median value of

the wind farm. A mean residual, measuring the

average value of these seven indicators, is then

constructed. In order to compare the detection per-

formances of the different linear residuals consid-

ered, a receiver operating characteristic (or ROC)

(Fawcett (2006)) curve analysis is performed. The
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method is evaluated on two fault cases, one where

the mono-residual monitoring approach provides

good detection performances, and the other where

the fault was not detected by the previous ap-

proach because of the variable selection result.

The outline of this paper is as follows. In Sec-

tion 2, the constrained variable selection algo-

rithm is first detailed, together with the linear

residual considered. Then the ROC-curve based

performance analysis method is presented. The

data used and the faults considered are discussed

in section 3. Finally, Section 4 and 5 show and

discuss the obtained models and detection perfor-

mances on the two faults.

2. Method

2.1. Constrained Greedy Forward
Selection (CGFS)

The models are generated using a greedy forward

selection (GFS) approach (Pohjankukka, Tuomi-

nen, Pitkänen, Pahikkala, and Heikkonen (2018)).

To reduce implementation costs, the proposed

GFS algorithm uses as an input the ten best vari-

ables to predict a given output, selected using

a Lasso type linear regression. This set of vari-

ables will be named VLasso. The variable selection

process provides tri-variate models applicable to

all turbines of a given wind farm by integrat-

ing a multi-turbine performance criterion: a given

model is ranked according to the median MAE

of all turbines of the wind farm, using one year

of data where the studied component is known

to be healthy for all turbines, following a normal

behavior modeling (NBM) approach (Schlechtin-

gen et al. (2013)). More details on the variable

selection process can be found in Raymond et al.

(2022).

As the GFS algorithm is applied on a fault-

free period, the detection performance on faulty

period remains unknown, and it can thus retains

regressors which allow a very accurate model-

ing on a healthy period, but correlated with the

variable to model in faulty period. The associated

residual is then insensitive to the fault. The so-

lution proposed in this paper is to run the GFS

algorithm iteratively with a constraint on VLasso:

let X0 = (X01, X02, X03) be the variables re-

tained by the application of the unconstrained

GFS algorithm, the process is executed again by

removing the variables X02, X03 from the input

VLasso, providing a new set of model variables X1.

X2 is then the variable selection result obtained by

deleting X01 and X03, and X3 the one obtained

by the removal of X01 and X02 from VLasso. The

algorithm is executed one last time by deleting

from VLasso all the variables of X0, providing X4.

In the following, this algorithm will be referred

as constrained greedy forward selection or CGFS,

and the set of variables removed from VLasso will

be called ”constraint”. Figure 1 illustrates the full

CGFS process.

2.2. Linear residuals

Once the five sets of model variables are selected

by the CGFS algorithm described in Section 2.1,

the models are learned over a one-year fault-free

period, and the health indicator is constructed ac-

cording to the multi-turbine approach presented in

Lebranchu, Charbonnier, Bérenguer, and Prevost

(2019), and detailed in Equation 1, where NT is

the number of wind turbines of the considered

wind farm, WTi a given wind turbine, and εWTi

the mono-turbine residual, defined as the devi-

ation between the measured value of an output

variable and its value estimated by a GFS model

for the data from WTi:

ε(t) = εWTi(t)−medianj∈[[1;NT ]](ε
WTj (t)) (1)

In addition to these five linear residuals, another

residual, called εXr
and built according to Equa-

tion 1 is considered. It uses as model variables

the power produced papparent, the measured wind

    

GFS

Fig. 1. Constrained GFS process
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speed swind and the outdoor temperature text.

These variables are relevant because they can be

related to a component heating, and since they are

insensitive to a fault in the operation of a turbine,

the risk of correlation with the modeled variable

during a fault is avoided.

The last indicator considered for the compu-

tation of the mean linear residual measures the

deviation between the value of a variable to be

modeled of a given wind turbine and the median

value at the scale of the wind farm. The advantage

of this indicator, which will be called εmd, is that

it is only composed of temperature variables that

have a linear relationship. εmd is therefore ex-

pected to present a lower false alarm rate than the

other indicators in normal operating conditions.

2.3. Performance evaluation using ROC
curves

To evaluate the detection performance of the in-

dicators, three metrics are used: the false positive

rate (FPR), the true positive rate (TPR), and the

advance detection time (ADT).

FPR measures the probability that the health

indicator is above a detection threshold τ during

a fault-free period of one-year H0, while TPR is

the probability that the health indicator is above

τ during the faulty period H1. The end of H1 is

set at a time when a fault has been detected by

the manufacturer or when the turbine has been

shut down for maintenance, while the beginning

of H1 is defined approximately given a WT expert

operator knowledge. The FPR and the TPR are

calculated from the area under the curve (AUC) of

the probability density function of the indicator on

these two periods, estimated by the kernel density

estimation method (Silverman (2017)).

For a given τ , the first detection date is set as

the first day from which the residual has crossed

the detection threshold at least five days of the

previous week during the faulty period. The ADT

is then defined as the number of days between the

first detection date and the end of H1.

Two ROC curves TPR(FPR) and ADT(FPR)

are then built using sets of FPR, TPR and ADT

computed for values of τ chosen from the values

of the residual indicator on H0 and H1 with a step

of 0.1.

The global detection performances of the differ-

ent linear residuals are evaluated using the AUC of

the two ROC curves (Park, Goo, and Jo (2004)).

The AUC is computed using the trapezoidal rule

(Atkinson (1991)).

In particular, the AUC of the two ROC curves

of εX0
, the residual built using the GFS algorithm

without constraints on VLasso, will be compared

to those of the mean residual ε, calculated from

the values of the seven residuals considered, to

evaluate the contribution of the ensemble method

proposed in this study.

It is necessary to recall that the GFS algorithm

generates models from fault-free data, and there-

fore no information about their detection perfor-

mances on H1 is available at the model generation

step. The interest of using an ensemble method

is therefore to find models that will have poten-

tially better detection performances on H1 than

the model built using the mono-residual approach

from Raymond et al. (2022). Since the existence

and occurrence of such models resulting from the

proposed process is not known, the computation

of the mean of the linear residuals is a relevant

choice.

3. Resources

3.1. Data

A subset of low frequency (10 minutes) SCADA

variables from the manufacturer’s database is used

in this study. Most of these operating variables are

temperatures from components, but the database

also includes mechanical variables such as rota-

tion speed and torque, electrical variables or mea-

sured wind speed.

3.2. Faults

Two fault cases will be considered in this study.

The first one, FA
generator, is an overheating of the

generator rear bearing of a turbine from the wind

farm A. This anomaly led to a replacement opera-

tion that lasted one month. This fault is monitored

using the modeling of the generator rear bearing

temperature tgeneratorRearBearing. The health in-

dicator constructed from the unconstrained GFS
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algorithm provides good detection performance

on H0 and H1.

The second one, FB
gearbox, is an abnormal heat-

ing of components of the gearbox system of a

turbine from the wind farm B. This anomaly,

monitored using the modeling of the gearbox oil

temperature tgearboxoil, did not result in the re-

placement of the component. However, the energy

losses are significant due to the recurrent clamping

of the wind turbine during the faulty period. The

model from the unconstrained GFS provides a

residual insensitive to the fault, resulting in very

poor detection performance on H1.

4. Results

4.1. CGFS variable selection

Tables 1 and 2 present the variable selection re-

sults of the CGFS algorithm for respectively the

wind farm A and B databases. In Table 1, it can

be seen that the variables sfastshaft and ttransfo are

regular choices of regressors to replace those in

X0.

Concerning the wind farm B database for the

modeling of the oil gearbox temperature, Ta-

ble 2 presents a more diverse choice of vari-

ables among the generated models, including

electrical variables, and several mechanical ones

(ρgearboxoil,sfastshaft). This result can be ex-

plained by the fact that the database contains more

variables belonging to the gearbox than to the

generator system.

Table 1. constrained GFS variable selection results on

wind farm A

Model label Model variables
X0 tgeneratorFrontBearing, tstator, tint
X1 tgeneratorFrontBearing, sfastshaft, ttransfo
X2 tstator, sfastshaft, ttransfo
X3 ttransfo, sfastshaft, tint
X4 ttransfo, sfastshaft, tgearboxambient

Xr papparent, swind, text

4.2. Linear residuals comparative
analysis

A line chart of the eight different residuals on

periods H0 (green) and H1 (red) is presented in

Figures 2 and 4. Figures 3 and 5 show the two

Table 2. constrained GFS variable selection results on

wind farm B

Model label Model variables
X0 tgearboxbearing2, tgearboxambient, tstator1
X1 tgearboxbearing2, ρgearboxoil, tgearboxbearing1
X2 iproduced, tgearboxambient, sfastshaft
X3 tstator1, sfastshaft, ρgearboxoil
X4 iproduced, tslowshaftbearing, ρgearboxoil
Xr papparent, swind, text

ROC curves TPR(FPR) and ADT(FPR), drawn

using the sets of metric performances computed

following the method detailed in Section 2.3, of

the eight residuals, with a highlighting on the mea-

surement points associated with the performance

constraint FPR = 5%, which represents a classic

detection performance objective when evaluating

a health indicator. The ROC curves from the seven

linear residuals are shown with a dashed line,

while a solid line is used for the mean residual.

Finally, Table 3 and 4 shows the AUC of the two

ROC curves TPR(FPR) and ADT(FPR) from the

eight considered residuals on the two fault cases.

For FA
generator, as can be seen in Figure 3 and

Table 3, the residual from the unconstrained GFS

algorithm εX0 provides an excellent global de-

tection performance for both the TPR(FPR) and

ADT(FPR) ROC curves. The other residuals gen-

erated using the variables selected by the Con-

strained GFS algorithm lead to unequal global

performance: some of which are slightly worse

than εX0
(εX1

, εX4
and εmd), while the oth-

ers show better overall performance for a single

ROC curve. Table 3 shows that although εX0
al-

ready provides excellent detection performance,

the mean residual ε provides a slight improve-

ment in global detection performances for both

ROC curves, with a respective gain of 1.64% for

TPR(FPR) and 0.65% for ADT(FPR).

Concerning FB
gearbox, by analyzing the model

variables in Table 2 and the line chart of Figure

4, it can be noticed that the fault-sensitive lin-

ear residuals εX1
, εX3

, εX4
, εXr

and εmd are the

ones that do not contain tgearboxambient, while the

others residuals do not detect the fault. In Figure

5, it can be seen that the ROC curves of the

residual εX0 and εX2 illustrate the non-detection

of the anomaly FB
gearbox with an almost linear
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TPR(FPR) curve (corresponding to an AUC close

to 50%, as can be verified in Table 4). In Table

4, it can be observed that all the other residuals

greatly improve the global detection performance

with respect to the three considered metrics. Con-

sequently, the mean residual ε also provides a

significant gain in global performance, of respec-

tively more than 35% for the TPR(FPR) curve and

more than 25% for the ADT(FPR) curve.

Table 3. AUC results of ROC curves from FA
generator

ROC curve εX0
εX1

εX2
εX3

εX4
εXr

εmd ε

TPR(FPR) 92.0 85.2 92.5 93.8 85.9 96.7 89.4 93.6
ADT(FPR) 94.0 86.5 93.2 93.7 87.0 27.4 89.7 94.7

Table 4. AUC results of ROC curves from FB
gearbox

ROC curve εX0
εX1

εX2
εX3

εX4
εXr

εmd ε

TPR(FPR) 51.8 78.9 48.6 82.8 89.6 91.0 85.9 87.1
ADT(FPR) 72.3 92.8 86.9 97.5 99.7 99.5 98.6 98.9

5. Discussion

In addition to the significant improvement in

global detection performance over mono-residual

analysis, the multi-residual monitoring approach

presented in this paper has other benefits in an in-

dustrial application context. Indeed, the availabil-

ity of the mean residual is increased in situations

of missing data as only one of the seven linear

residuals is needed for ε to be evaluated.

By considering more complex machine learn-

ing methods such as support vector machine or

neural network, it is very likely that the AUC
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will be improved. However, these methods are

less robust to industrial constraints, and provide

less interpretable models than the proposed lin-

ear approach (Schlechtingen and Ferreira Santos

(2011)) (one can indeed notice that although more

variables are considered for the monitoring of a

component, the variable selection result remains

physically consistent).

6. Conclusion

This paper presents a solution to improve the de-

tection performance of the CBM process proposed

in Raymond et al. (2022), considering an ensem-

ble of linear residuals.

Seven residuals are considered, five of them

coming from the GFS variable selection process.

The application of constraints on the set of input

variables of the GFS algorithm, VLasso, allows to

obtain a greater diversity in the model variables.

These seven signals are then used to construct

a mean residual, whose detection performance is

compared with that of the mono-residual approach

from Raymond et al. (2022).

The global detection performance is evaluated

and compared using the AUC of two ROC curves,

constructed from three performance metrics.

The multi-residual analysis is applied on two

fault cases: for the first fault, the mean resid-

ual slightly improves the global detection per-

formances of the mono-residual approach, which

initially provided very good performance. For the

second fault, not detected by the application of the

mono-residual approach, the mean residual allows

a detection of the fault, and a great improvement
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of the global performance, both in the fault-free

and faulty periods.
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tigao, and E. Gómez-Lázaro (2020, January).

Using SCADA Data for Wind Turbine Condi-

tion Monitoring: A Systematic Literature Re-

view. Energies 13(12), 3132.

Márquez, F. P. G. (2020). MAINTENANCE MAN-

AGEMENT OF WIND TURBINES. S.l.: MDPI

AG. OCLC: 1191152052.

Opitz, D. and R. Maclin (1999, August). Pop-

ular Ensemble Methods: An Empirical Study.

jair 11, 169–198.

Park, S. H., J. M. Goo, and C.-H. Jo (2004). Re-

ceiver Operating Characteristic (ROC) Curve:

Practical Review for Radiologists. Korean J

Radiol 5(1), 11.

Pichika, S., G. Meganaa, S. Geetha Rajasekharan,

and A. Malapati (2022). Multi-component fault

classification of a wind turbine gearbox us-

ing integrated condition monitoring and hybrid

ensemble method approach. Applied Acous-

tics 195(11).

Pohjankukka, J., S. Tuominen, J. Pitkänen,

T. Pahikkala, and J. Heikkonen (2018, Octo-

ber). Comparison of estimators and feature

selection procedures based on ALS and digital

aerial imagery. Scandinavian Journal of Forest

Research 33(7), 681–694.

Raymond, T., A. Lebranchu, C. Bérenguer, and
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