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Sliced-normal (SN) distributions enable characterization of parameters exhibiting complex dependencies with
minimal modeling effort. We leverage the semialgebraic nature of SN distributions to identify the most likely points
of failure (MLPs) corresponding to a given failure domain. When this domain is semialgebraic, Sum of Squares
(SOS) optimization is used to guarantee that no MLPs are missed within a region of interest. The MLPs not only
enable the identification of all the critical points of failure, but also the efficient estimation of failure probabilities
using Importance Sampling (IS). The IS density is constructed as a Gaussian Mixture (GM) model with means at the
MLPs and covariances equal to the weighted empirical covariance of sample sets drawn in the vicinity of the MLPs.
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1. Introduction

The main aim of reliability analysis is to accu-

rately and efficiently quantify the probability of

failure of any given system. Consider δ ∈ Rnδ

to be the nδ uncertain parameters of the system

(where R is the set of real numbers) and fδ(δ; θ) ∶Rnδ → R+ to be a joint density function with

shaping hyperparameter θ, having support set Δ ⊂Rnδ . Consider also ng individual limit state func-

tions (LSF) gj(δ) = 0 ∶ Rnδ → R for j = [1, ng].
The failure domain associated with an individual

LSF is defined as F j = {δ ∈ Δ ∶ gj(δ) ≥ 0}. The

full failure domain is defined as the union of the

ng failure regions

F = ng⋃
j=1

F j . (1)

From this, the probability of failure can be calcu-

lated as the integral over F of the joint density

function as

pf(θ) = ∫
F
fδ(δ; θ)dδ. (2)

The complement of the failure domain will be

called the success domain.

Systems in engineering applications often have

a large number of uncertain parameters and com-

paratively small failure probabilities. Further, the

probability of failure in Eq. (2) is a multidimen-

sional integral that cannot be evaluated analyti-

cally in general. Therefore, Monte Carlo methods,

Bayesian quadrature, or sparse grids approxima-

tions are required to approximate it, a task that

is often computationally expensive. For instance,

accurate estimation of a failure probability of

1 × 10−6 using Monte Carlo sampling requires

N = 1 × 108 function evaluations (Papaioannou

et al., 2016), whose cost might be unacceptably

large when gj(δ) are computed from numerical

simulations. A variety of approaches for the ef-

ficient approximation of pf have been developed

using asymptotic approximations such as FORM

and SORM (Der Kiureghian, 2005). They yield

reasonable results when (i) there is a single LSF,

and the corresponding failure domain is closely

approximated by a half-space (Hohenbichler et al.,

1987) or a quadratic set, and (ii) when there is

a single LSF and the failure probability is small.

Both of these settings depend heavily on the iden-
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tification of the true Most Probable Point (MPP) of

failure. This later requirement is far from certain

when the LSFs are complex and the uncertain

space is high-dimensional. Furthermore, calcula-

tion of the MPP requires mapping the joint den-

sity to standard normal space. This is not possi-

ble when the uncertain parameters exhibit non-

linear parameter dependencies. In contrast, sam-

pling techniques employing variants of the Monte

Carlo (MC) simulation relax these requirements

at the cost of higher computational expense. To

alleviate this expense, importance sampling tech-

niques have been developed which provide a low

variance estimate of the failure probability with

a reduced number of samples (Tabandeh et al.,

2022).

In this work we assume that fδ(δ; θ) takes the

form of a sliced distribution. Sliced distributions

allow characterization of multivariate data exhibit-

ing complex parameter dependencies with min-

imal modelling effort (Crespo et al., 2019) and

have been shown to be versatile and efficient when

the number of uncertain parameters is moderate

(Crespo et al., 2021). Further, we leverage the

semialgebraic nature of sliced distributions to de-

fine a set of most likely points of failure (MLPs) in

a manner analogous to the MPP in FORM/SORM,

and construct an importance sampling distribution

about these points to efficiently estimate pf . How-

ever, these MLPs, which can be found completely

and correctly using semi-infinite programming,

are applicable to complex distributions for which

no transformation to standard normal space exists.

This paper is organized as follows. In Section 2,

sliced distributions are introduced. Section 3 in-

troduces the algorithm to search for the complete

set of MLPs in the failure domain and Section

4 presents an importance sampling scheme for

the accurate estimation of pf that leverages the

MLP set. Finally, Section 5 applies the proposed

framework to several examples of increasing level

of complexity and realism.

2. Sliced-Normal distributions

The developments that follow are based on the

Sliced-Normal (SN) class of parameter models

(Crespo et al., 2019, 2021). SNs have been shown

to accurately characterize complex parameter de-

pendencies in moderate dimensions. A brief sum-

mary of their underlying structure is presented

next. Denote as Sn
++ the space of symmetric posi-

tive definite matrices in Rn×n. Consider the poly-

nomial mapping from physical space δ ∈ Rnδ

to feature space z ∈ Rnz given by the function

z = t(δ;d). Here t(δ;d) ∶ Rnδ → Rnz with

nz = (np+d
np

) − 1, is the vector of monomials in δ

of degree less than or equal to d. The joint density

of an SN is

fδ (δ; θ) = ⎧⎪⎪⎨⎪⎪⎩
1

c(θ)
exp (−φ(z;θ)

2
) if δ ∈Δ,

0 otherwise,
(3)

where the hyperparameter θ = {μ,P} comprises

the mean μ ∈ Rnz and the precision matrix P ∈
Snz
++ ,

φ(z;μ,P ) = (z − μ)⊺P (z − μ) (4)

is a Sum of Squares (SOS) of polynomials in δ of

degree 2d, c(θ) is the normalization constant, and

Δ is the support set.

The maximum likelihood (ML) estimate of an

SN entails solving a non-convex optimization pro-

gram in which μ and P are the decision variables.

The Primal SN subclass proposed in Crespo et al.

(2021) leads to a convex optimization program

thereby facilitating its usage in higher dimensions.

This subclass is given by

φ(z;λ) = (z − μ☆)⊺C diag(λ)C⊺(z − μ☆), (5)

where θ = λ ∈ Rnz with λ ≥ 0 is the hyper-

parameter of the distribution, CC⊺ is a Cholesky

decomposition of P ☆,

μ☆ = 1

q

q∑
i=1

z(i), (6)

P ☆ = (1
q

q∑
i=1

(z(i) − μ☆) (z(i) − μ☆)⊺)−1 , (7)

z(i) = t (δ(i);d), and D = {δ(i)}qi=1 is the training

data set.

The normalization constant c(θ) in Eq. (3) can

be approximated by

c(m,θ) = ΔV

m

m∑
i=1

exp
⎛⎝−φ (t(u(i);d); θ)2

⎞⎠ , (8)
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where {u(i)}m
i=1

are samples uniformly distributed

over Δ, and ΔV is the volume of Δ.

3. Search for the most likely points of
failure (MLPs)

Failure probabilities in reliability analysis are of-

ten small, and their accurate estimation is essen-

tial. In this article an importance sampling (IS)

technique is developed for this purpose. To this

end, we first introduce a method to identify the

MLPs. These points represent dominant failure

modes of the system.

In this section we assume that we have a system

with uncertain parameters characterized by a SN

with joint density fδ(δ) ∶ Rnδ → R+, and a set of

LSFs gj(δ) ∶ Rnδ → R where the failure domain

is defined as in Eq. (1). In this setting we want to

identify the elements of the failure domain where

the likelihood function has local maxima. As such

we are not only interested in the global maximum,

which corresponds to the dominant failure mode,

but to other failure modes as well.

Key steps of the algorithm used to identify the

MLPs, detailed in the Algorithm 1, are explained

next:

(1) Find the element of the failure domain where

the likelihood is maximal. Call this point

MLP1.

(2) Add a constraint that makes the vicinity of

MLP1 be in the success domain. We assume

that this region is a hypersphere centered at

MLP1 of radius r, where r is small.

(3) Solve the optimization program with the

sphere exclusion constraint. If the optimum

δ⋆, lies on the surface of the sphere, increase

r and repeat until the optimum no longer lies

on the sphere’s surface. This optimum is the

next distinct MLP, called MLP2.

(4) Repeat the process above until the likelihood

at the newly discovered MLP is less than 1%

that of the first MLP. Every time the solution

to the optimization program falls on the sur-

face of any of the existing spheres, the corre-

sponding radius of this sphere is increased.

Effectively, once the first MLP has been found,

it is contained by a hypersphere whose radius

Algorithm 1 The proposed algorithm to search for

the most likely points of failure (MLPs).

Require: z = t(δ, d)
Require: φ(z;μ,P ) with P ≻ 0

Require: gi(δ) for i ∈ [1, ng]
Require: solve(φ(z), c(δ))

1: r, ε, φ⋆, δ⋆ ← []
2: λ← λ0

3: tol ← tol0
4: k ← 1

5: c(δ) =max(gi),∀i ∈ [1, ng]
6: φ⋆k, δ

⋆
k , feas← solve(φ(t(δ, d)), c(δ))

7: while feas do
8: rk ← r0
9: εk ← 0

10: while any(ε) < tol and feas do
11: j ← find(min(ε))
12: rj ← λrj
13: gartj (δ, δ⋆j , rj) = ∥δ − δ⋆j ∥ − rj
14: c← [c, gartl ],∀i, l ∈ [1, ng], [1, k]
15: φ⋆cnd, δ

⋆
cnd, feas← solve(φ(z), c(δ))

16: ε← gartl (δ⋆cnd, δ⋆l , rl),∀l ∈ [1, k]
17: end while
18: if feas then
19: φ⋆k+1, δ

⋆
k+1 ← φ⋆cnd, δ

⋆
cnd

20: k ← k + 1

21: end if
22: end while

grows sequentially until the optimum jumps. The

cycle repeats with each of the spheres being iter-

atively grown out until no new MLPs are found.

The initial radius and the growth rate of the

spheres are hyperparameters to be optimized and

are set heuristically. Over several test cases, an

initial radius corresponding to 5% of the support

width and a growth rate of λ = 1.25 reliably

obtained the full set of MLPs. Setting either value

too high can lead to missing subsequent MLPs in

the immediate vicinity of a previously identified

MLP. Setting the values too low, whilst guaran-

teeing identification of all MLPs, leads to a com-

putationally expensive search.

To search for an MLP within a region defined

by a set of nonlinear constraints c(δ) ≤ 0, the
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following optimization program is used

δ⋆ = argmin
δ∈Δ

{φ(t(δ, d);μ,P ) ∶ c(δ) ≥ 0} , (9)

where we recall the definition of φ(t(δ, d);μ,P )
given by Eq. (4). This program is equivalent to

maximizing the likelihood within the failure do-

main. In Algorithm 1 this optimization program

is denoted by solve(φ(z), c(δ)). For the first call

of solve (line 6), the region defined by c(δ) ≥
0 (line 5) corresponds to maxj gj(δ) ≥ 0. In

line 14 we define the new region where the next

candidate MLP should be searched for as the

subset of the failure region outside the artificial

spheres centered at the MLPs of radii rk. As the

algorithm progresses, all the points within spheres

containing previously found MLPs become infea-

sible. The program in Eq. (9) can be solved using

standard gradient-based optimization algorithms.

Note however that such algorithms might fail to

converge to the global optimal, thereby rendering

underestimations of the failure probability.

However, when the limit state functions are

polynomial, the optimization program in Eq. (9)

can be solved using semidefinite programming

thereby guaranteeing that no local maxima are

missed, and therefore that the computed reliability

is accurate. The details of this formulation are

presented next.

3.1. Global optimality using semidefinite
programming (SDP)

A general polynomial optimization problem can

be stated as

min p(x), subject to x ∈K
with K ∶= {x ∈ Rn ∣ qi(x) ≥ 0, rj(x) = 0} , (10)

where p, qi and rj are multivariate polynomials,

noting that the set K is basic semialgebraic. If we

could optimize over the set of polynomials taking

non-negative (positive semidefinite) values on a

given basic semialgebraic set, then Eq. (10) could

be solved globally (Ahmadi, 2018). This can be

seen by realizing that the optimal value of Eq. (10)

is equivalent to the optimal value of the program

max γ,

subject to p(x) − γ ≥ 0,∀x ∈K.
(11)

The global solution to this program can be tightly

bounded using Sum of Squares (SOS) optimiza-

tion (Packard et al., 2010). If the set of nonlinear

constraints c(δ) ≥ 0 in Eq. (9) is polynomial (or

can be closely approximated by polynomials), the

program in Eq. (9) becomes a particular instance

of Eq. (10). φ(t(δ, d)) is the polynomial p(x),
which we would like to minimize subject to a

set of constraints. Unfortunately, the union of the

individual failure domains prescribed by c(δ) =
maxj gj(δ) is not amenable to SDP even when

such domains are semialgebraic. This difficulty

can be avoided by considering each individual

LSF separately.

Therefore, the polynomial optimization pro-

gram corresponding to the j-th LSF is

min
δ∈Δ

φ(t(δ, d)), subject to δ ∈K
with K ∶= {δ ∈ Rnδ ∣ gj(δ) ≥ 0,∥δ − δ⋆l ∥ − rl ≥ 0, l = [1, k]}, (12)

where all inequality constraints are basic semi-

algebraic. Since K is defined as the intersection

of the constraints, it is also basic semialgebraic.

Following the redefinition in Eq. (11) we can

now search for the largest γ such that the set{δ ∈ K, φ(t(δ, d)) − γ ≥ 0} is empty. Using

the Positivstellensatz of Putinar (1993), which is

an example of a theorem of the alternative (and

is possible over the Positivstellensatz of Stengle

(1974) as K is compact), this is equivalent to

finding

max γ, such that φ(t(δ, d))−γ + s1(δ) + s2(δ)gj(δ)
+ k∑

l=1

sl+2(δ)(∥δ − δ⋆l ∥ − rl) is SOS,

(13)

where the si for i = 1, . . . , k + 2 are SOS multipli-

ers. This is now in the form of an SOS program

that can readily be solved using standard SDP

algorithms and certified using Positivstellensatz

certificates (Lacerda and Crespo, 2017). Thus, by

running Algorithm 1 once for each gj(δ) we can

provide a certificate on the global optimality of

the detected MLPs. The requirement for using this

approach is that the LSFs are polynomial. If this is

not the case, standard gradient-based algorithms
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can always be used with the advantage that all

LSFs can be considered together, but at the risk

of missing some MLPs.

4. MLP-based Importance Sampling

Now that a set of MLPs have been identified,

we propose an importance sampling algorithm for

accurately estimating the failure probability. The

importance sampling distribution should locally

approximate the target distribution (in this case an

SN) in the neighborhood of the MLPs.

A general importance sampling approach uti-

lizes the transformation

pf(θ) = ∫
Δ
I (δ ∈ F) fδ(δ)

fq(δ)fq(δ)dδ, (14)

where I(δ ∈ F) is the indicator function which

takes value of 1 if δ ∈ F and 0 otherwise. The

integrand has been multiplied and divided by an

arbitrary distribution fq(δ), called the importance

sampling distribution, to be chosen by the analyst.

The sampling based estimate of this integral is

then

pf(θ) ≈ 1

ns

ns∑
i=1

I (δ(i) ∈ F) fδ(δ(i))
fq(δ(i)) . (15)

A sensible choice of fq(δ) can greatly reduce the

sampling error introduced in estimating pf and

allow accurate estimation with just a few sam-

ples. Several choices of fq(δ) reduce Eq. (15) to

more recognizable (but not necessarily efficient)

approximations, namely:

(1) fq(δ) = fδ(δ). In this case the sampling dis-

tribution and the target distribution are equiv-

alent and Eq. (15) reduces to a standard Monte

Carlo estimate

pf(θ) ≈ 1

ns

ns∑
i=1

I (δ(i) ∈ F) . (16)

This estimate is very inefficient for small fail-

ure probabilities. In fact, the coefficient of

variation is

εpf
=√1 − pf

nspf
, (17)

from which it is readily observed that for

an accuracy εpf
∼ 10%, when pf is of the

order O(10−k), around O(10k+2) samples are

required. For instance, the estimation of a fail-

ure probability of 1 × 10−6 to 10% accuracy

requires 1 × 108 samples.

(2) fq(δ) ∼ U(δ, δ). In this case the sampling

distribution is uniform over Δ, resulting in the

estimation

pf(θ) ≈ ΔV

ns

ns∑
i=1

I (δ(i) ∈ F)fδ(δ(i)). (18)

Sampling from a uniform distribution over the

support is very inefficient when the failure

region has a much smaller volume.

(3) fq(δ) = f⋆q (δ) = 1
pf
I(δ ∈ F)fδ(δ). This

is the theoretically optimal sampling distri-

bution and leads to a zero variance estimate

of pf (Ang et al., 1992). However, it is not

realizable in practice since the normalization

constant is itself pf , which is the ultimate

quantity of interest.

Whilst the optimal distribution in (3) is not re-

alizable, it sheds light on the structure that a good

IS distribution should inherit. Namely, we want an

importance sampling distribution that mimics the

target distribution in the subregions of the failure

domain having a comparatively large likelihood,

while having the smallest probability of success.

The approach proposed uses the MLPs to con-

struct and important sampling distribution. This

distribution is given by a Gaussian mixture model

having their means at the MLPs and their co-

variances being equal to the weighted empirical

covariancea of sample sets drawn in the vicinity of

the MLPs. Furthermore, the weights of the mixed

Gaussian are made equal to the likelihood at the

corresponding MLP.

Means to compute the weighted covariance are

detailed next. Consider a uniform random vector

X ∼ U(δ⋆k − l/2, δ⋆k + l/2), X ∈ Rnδ , (19)

and samples x(i) with i = 1, . . . , nw taken from

X. The weighted empirical covariance matrix Σw,

where sample weights are given by the likelihood

aSamples of a uniform distribution clustered around an MLP

are weighted according to the value of the likelihood for the

target distribution therein.
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Fig. 1. Upper views of the SN density and contours of the LSF showing the progression of the search for the MLPs
(x’s) with increasing iteration.

of the SN at the sample, can be calculated from

Σw = ∑nw

i=1 fδ(x(i))(x(i) − μw)(x(i) − μw)T∑nw

i=1 fδ(x(i)) ,

(20)

where μw is the weighted sample mean

μw = ∑nw

i=1 fδ(x(i))x(i)∑nw

i=1 fδ(x(i)) . (21)

The importance sampling density is then

fq(δ) = k∑
i=1

fδ(δ⋆i )Ni(δ⋆i ,Σw
i ). (22)

Since sampling is needed only from a uniform dis-

tribution in the vicinity of each MLP, this method

scales well to high dimensions.

5. Numerical Experiments

We now apply the MLP-based importance sam-

pling method to two test cases, one with nδ = 2 to

visualize the method and a second with nδ = 7

to show its performance in higher dimensions.

In both instances we compare the results against

sampling uniformly and from the SN itself.

5.1. Four branch function

In this example we use an SN density obtained

from modelling a Van der Pol oscillator with

uncertain input parameters. The failure domain

is composed of a modified four branch function

giving a true probability of failure of pf = 0.021.

This MLP problem can be solved by both SDP

and gradient-based optimization as the LSFs are

polynomial. Figure 1 shows the five MLPs found

Fig. 2. Upper views of optimal (top) and MLP-based
(bottom) importance sampling densities.

in the search. As the search progresses the ar-

eas of artificial safety grow around the MLPs,

deducting from the failure domain and allowing

subsequent MLPs to be found. Optimal points
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Fig. 3. Convergence of pf when sampling from the
proposed MLP-based IS distribution, a uniform distri-
bution and the target distribution.

may jump between the surfaces of the spheres

around the current MLPs, and it is the sphere on

which the most recent optimum exists that has its

radius increased. This explains why, for example,

the sphere around MLP3 continues to grow after

MLP4 has been found. The result is the detection

of 5 distinct MLPs, where two were found in

the top right part of the branch function. Visual

inspection confirms the correct identification of all

points, and the same set of points were obtained

using SDP. The entire search took 4s to complete

on a single Intel® Core™ i7-8665U processorb

highlighting the efficiency of the algorithm.

Figure 2 shows the optimal IS density and the

constructed MLP-based IS density. Note that the

Gaussians are aligned with the target distribution

locally. Figure 3 shows the convergence of the

three IS techniques as ns increases. The MLP-

based IS density reduces the required ns for ac-

curate calculation of pf by an order of magnitude

over uniform sampling and two orders of magni-

tude over sampling directly from the SN. Further,

bThe use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such prod-

ucts or manufacturers by the National Aeronautics and Space

Administration.

the method is guaranteed to account for modes of

failure with small pf , which a standard Monte-

Carlo campaign might miss entirely.

5.2. Higher dimensional example

We now consider an example SN in nδ = 7 dimen-

sions with a failure domain consisting of 15 indi-

vidual failure functions gj(δ). To help visualize

Fig. 4. Samples drawn from SN density with nδ = 7.

Fig. 5. Sample failures (red x’s) and the set of iden-
tified MLPs (black x’s) for the SN. Diagonal shows
histograms of sample failures.



1223Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 6. Convergence of pf when sampling from the
proposed MLP-based IS distribution, a uniform distri-
bution and the target distribution.

the SN, Figure 4 shows empirical marginal den-

sities of samples drawn from it along the diago-

nal, whereas the off-diagonal plots are projections

of the cloud of parameters onto 2-dimensional

subspaces. Strong parameter dependencies among

δ1-δ3, and δ4 -δ6, are apparent. Figure 5 shows

empirical marginal densities of the samples falling

into the failure domain along the diagonal, and

the sample failures are plotted on 2-dimensional

subspaces alongside the detected MLPs on off-

diagonal plots. Note that samples falling into the

failure domain are clustered around the MLPs,

suggesting the MLP search successfully identified

the failure modes. Finally, Figure 6 shows the

convergence of pf for the IS distribution against

uniform sampling and sampling from the SN it-

self. The MLP search took 170s to run on a single

Intel® Core™ i7-8665U processor with an addi-

tional 6s to calculate pf from the IS distribution,

highlighting the efficiency of the algorithm in

higher dimensions

6. Conclusions

This paper presents an IS technique based on

discovering a set of most likely points of fail-

ure (MLPs). The IS distribution is constructed

as a weighted Gaussian mixture with centroids

located at the identified MLPs. The method al-

lows the efficient computation of failure proba-

bilities where there are multiple modes in possi-

bly disconnected failure region, and thus where

FORM/SORM methods would fail. Whilst there

is some overhead cost required to search for the

MLPs, only a few samples are required in targeted

areas of the support to compute the covariance

around each MLP. Consequently, the method per-

forms well in higher dimensional settings and has

shown efficient computation up to nδ = 7.
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