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The operation, control and maintenance of many systems rely on the signal communication functions provided by
telecommunication systems. This generates Cyber-Physical Systems (CPSs). Computational risk assessment is be-
ing advocated to properly account for the complexities and interdependencies of CPSs. However, simulation times
can be high for practical feasibility. Surrogate models are being explored to address computational issues. Among
these, Grey-Box Models (GBMs) have recently been proposed to merge the physical knowledge embedded into a
high fidelity White-Box Model (WBM) with the learned-by-data knowledge used to train a Black-Box Model
(BBM). In this paper, we propose the use of a novel Importance Function (IF) within a Repetitive Simulation Trials
After Reaching Thresholds (RESTART) approach to simulate accidental scenarios for training BBMs, ultimately
embedded into a GBM. A case study is considered concerning an Integrated-Power and Telecommunication
(IP&TLC) CPS of literature.
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1. Introduction discovering scenarios that might be overlooked
by expert judgment or traditional risk assessment
methods, and identifying causes and criticalities
of the CPS.

Monte Carlo Simulation (MCS) (Zio 2013) is a
straightforward way to generate scenarios, driven
by the stochastic occurrence of discrete events.
However, the number of scenarios to be simulated
for exploring CPSs response is enormous, partic-
ularly when the significant scenarios have a small
probability of occurrence (Di Maio and Zio,
2017). In practice, MCS is most of the times in-
feasible due to the computational burden related
to running a high-fidelity White-Box Model
(WBM) for the CPS response. Metamodeling by
data-driven Black-Box Models (BBMs) can lower
the computational demand while keeping a suffi-
cient level of accuracy if enough data are availa-
ble for training, yet they lack interpretation

Cyber-Physical Systems (CPSs) integrate cyber
and physical networks of components to enhance
the performance of critical lifelines, such as en-
ergy, transportation, and communication (Cas-
sottana et al. 2023; Zio 2018). Traditional risk as-
sessment methods are unsuitable to tackle the het-
erogeneous complex dynamics and the numerous
uncertainties characterizing the CPS components
and their dependent behaviors (Cassottana et al.
2023).

Computational risk assessment can be used to
explore CPSs responses in a multitude of scenar-
ios (Di Maio and Zio 2017). Scenario generation
amounts to simulating CPS responses to external
stimuli (e.g., environmental factors and/or com-
ponents operational conditions) and disruptive
events (e.g., cyber-attacks and/or physical fail-
ures) that might occur. Post-processing allows
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(Peherstorfer, Willcox, and Gunzburger 2018).
In-between WBMs and BBMs, Grey-Box Models
(GBMs) are an attractive solution to reduce the
computational cost of MCS, while preserving the
fidelity and interpretability of the simulation out-
comes. A sufficient number of scenarios that
catch the CPS responses under normal and acci-
dental conditions are needed to effectively train
the BBMs embedded in the MCS (Futalef,
Di Maio, and Zio 2022).

Rare events simulation methods can be devised
to explore relevant scenarios. To name a few, we
mention splitting (e.g., subset simulation (Cadini
et al. 2012) and RESTART (Turati, Pedroni, and
Zio 2016)), Importance Sampling (IS) (e.g., clas-
sical IS (Kroese, Taimre, and Botev 2011) and
cross-entropy (Ansari, Chung, and Zio 2021)),
and Line Sampling (LS) (e.g., traditional LS and
variants (Dang et al. 2023)) methods. Splitting
methods are suitable for CPS as they are designed
for analyzing non-linear dynamical systems and
are not strongly influenced by the dimensionality
of the space of the model variables. RESTART
can be particularly efficient since it avoids simu-
lating uninteresting trials. Key tasks are defining
the scalar mapping and the levels that drive the
splitting.

In this work, we tailor RESTART to the prob-
lem of exploring CPS accidental scenarios for
identifying the relevant ones for training the BBM
of a GBM. For this, we propose a novel dynamic
Importance Function (IF) that quantifies the vul-
nerability of the CPS along the simulated scenar-
ios by accounting simultaneously for 1) the cen-
trality of the CPS components exposed to haz-
ards/threats and 2) the time-dependent suscepti-
bility to failure of the CPS components. As we
shall show, this allows RESTART to allocate
computational time to simulate significant scenar-
ios. Centrality metrics have been used for the re-
liability assessment of complex systems thanks to
their capability of highlighting important compo-
nents in terms of topology (Eusgeld et al. 2009;
Devineni et al. 2020; Piccinelli et al. 2017). The
selected centrality metric, i.e., the Current-Flow
Betweenness Centrality (CF-BC) (Newman
2005) is static and ranks the components with re-
spect to their topological relevance in fulfilling
the system function.

Susceptibility, instead, dynamically quantifies
the stress on a component throughout the scenario
evolution, aiming at quantifying to which extent

the component is endangered when exposed to
some hazard(s). RESTART, guided by the novel
IF, can guide the development of relevant acci-
dental scenarios in which susceptible components
(i.e., that bear at the same time the largest central-
ity and susceptibility along the simulation) can be
damaged.

As a case study, we consider an Integrated-
Power and Telecommunication (IP&TLC) CPS
infrastructure of literature (Di Maio, Stincardini,
and Zio 2022), that consists of a power grid
equipped with a variety of cyber control units that
communicate over a Telecommunication Net-
work (TLCN). The results of RESTART guided
by the novel IF are compared to those found when
other IFs based on vulnerability metrics of litera-
ture (Di Maio, Stincardini, and Zio 2022) are
adopted. Results show that the proposed IF out-
performs the others in terms of relevant scenarios
exploration.

The remainder of the paper is as follows. Sec-
tion 2 recalls the RESTART method and presents
the novel IF. Section 3 presents the case study and
the comparison of different IFs. Finally, in Sec-
tion 4 some conclusions are drawn.

2. CPSs Scenario Generation using RESTART

2.1. Repetitive Simulation Trials After Reaching
Thresholds (RESTART)

RESTART is a rare events simulation method
that proceeds as follows (J. Villén-Altamirano
2014; M. Villén-Altamirano and Villén-Altami-
rano 2011):

1) Let x(t) € Q C R" be the state of a multi-
dimensional stochastic process at time ¢ with ini-
tial condition x(0) = x,.

2) Let {¢(x(1)), t > 0} be a scalar map ¢: Q —
[0, o0), called Importance Function (IF), whose
domain is divided into m regions defined by the
thresholds T; > 0,i € {1,...,m}, such that T,y >
T;, if and only if i’ >i. The regions C;j:=
{x € Q|¢p(x) > T;}are nested (ie., Q =CyD
C;... D C,, = A), defining the intermediate re-
gions AC; := C; — Cj_;.

3) Run a main trial, which is a crude MCS of
x(t), track qb(x(t)) and record the time(s) it up-
crosses the threshold T;; label the up-crossing
event(s) as U and the occurrence time(s) as ty,,
saving the corresponding state(s) X(tUl)-
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4) Perform R; — 1, R; € N, simulations called
retrials, each of them starting from x(t;,) and
finishing at some end-of-simulation condition
(e.g., mission time, occurrence of a fixed number
of events, etc.) or when ¢(x(t)) down-crosses Tj.

5) If during any of the R; retrials (,b(x(t)) up-
crosses the threshold T, > T;, steps 2) and 3) are
repeated, times ty, and states X(tuz) saved and
R, — 1, R, € N, new retrials simulated until the
end-of-simulation condition or when T, is down-
crossed.

6) Repeat steps 2) to 5) for all remaining thresh-
olds and retrials, or until an end-of-simulation
condition is reached, i.e., simulate R; — 1 new re-
trials, R; € N, when ¢(x(t)) up-crosses any
threshold T;.

The rationale of RESTART is that it is more
likely for x(t) to reach an intermediate region if
it comes from an immediate lower-importance re-
gion rather than jumping, suddenly, across sev-
eral. Therefore, simulating behaviors in higher-
importance regions is favored, resulting in the al-
location of more computational effort to the oc-
currence of low probability events that would be
overlooked and the corresponding scenarios not
used for training otherwise the CPS GBM.

2.2. The Novel Importance Function

In (Turati, Pedroni, and Zio (2016)), the cut sets
of the system are obtained from its structure func-
tion and used to inform guide RESTART; how-
ever, cut sets identification in large CPS is im-
practical (Di Maio, Pettorossi, and Zio 2023).
Then, typical CPS vulnerability metrics, such as
Energy Not Supplied (ENS) or Power Generation
Mismatch (PGM) (Di Maio, Stincardini, and Zio
2022), could be an alternative to guide the sce-
nario generation; however, as we shall show in
what follows, these yield unfruitful scenarios ex-
ploration for most of the computational time. To
overcome the above limitations, we propose to
combine a metric of the centrality of CPS compo-
nents, typically used for network topology analy-
sis, with a metric of their susceptibility, obtaining
a dynamic metric that is used as IF to drive
RESTART towards relevant scenarios of opera-
tional conditions.

As centrality metric, we adopt the Current Flow
Betweenness Centrality (CF-BC) (Newman
2005), which ranks the importance of a
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component (electrical device/TLC gateway)
based on the average topology-induced flow pass-
ing through it (electrical current/information). Let
G = (N, E) be a CPS graph, with N the ny nodes
(e.g., single-purpose components) and E the ng
edges (e.g., interconnections). Given sets of
sources S C N and targets T C N, the CF-BC of
a j-th node is (Newman 2005):

Z{s<t} Ij(s_t)

9 W2yt — 1)’

is the flow due to a source-target pair

M

where I;S_l)

of components s — t,s € Sandt € T. Notice that
this metric provides a ranking of the components
that is source/target dependent: by choosing the
s — t pairs, we can tune the exploration, focusing
on the accidental scenarios affecting certain com-
ponents instead of the entire network.

During the scenario evolution, the susceptibility
of a component dynamically quantifies its usage
level (or vice versa its resourcefulness) with re-
spect to its factory ratings (i.c., the stress), when
exposed to some hazard(s). Thus, susceptibility
equal to zero means “no usage” (i.e., resourceful
component), whereas susceptibility equal to one
means “full usage” or “down” (resourceless com-
ponent). Susceptibility v;(¢) of a j-th component
is:

O

v,(t) =4 70 if j is operating; @)
J
1 otherwise,

where X](-l)([) is the [-th variable of the j-th com-
ponent of the state vector x(t) and x]?L is its maxi-
mum allowed value that cannot be exceeded.

By coupling the centrality of Eq. (1) and the
susceptibility of Eq. (2), we obtain the dynamic
vulnerability metric:

v (t) = ¢; - v;(t). 3)

The rationale is that v;(t) emphasizes the role
of components that contribute more to the vulner-
ability of the system when they are susceptible
(almost to exceed the xj(l)). The d)(x(t)) is thus

set equal to the network-level vulnerability metric
is defined as:
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d(x(1)) = V() ¢ - v;(0)

JE(L,...nN+nE}
v;(t) 4)
je{1,..nNy+ng}

In practice, the network vulnerability V(t) of
the CPS can be obtained by:

1) modeling the CPS by means of the state vec-
tor x(t) and the dynamics (i.e., the transition func-
tions among the states of x(t));

2) mapping the CPS into a graph G = (N, E),
where nodes N are bar buses, generators, electri-
cal loads, TLC gateways, controller units, and so
on, and the edges E are transmission lines, trans-
formers, fiber-optic cable, and so on;

3) calculating the CF-BC for all the elements in
G. The sources S are generators and the control
center, whereas targets T are customers and con-
trol units, defining the (s — t) pairs;

4) computing, during simulation, the network-
level vulnerability of each component j € NUE
via Eq. (4).

2.3. Performance metric

To evaluate the performance of the proposed IF
in guiding RESTART, we calculate £ that ac-
counts for the simulation effort allocated to reach
a generic importance region AC, i.e., up-crossing
the corresponding threshold T

x(t))>T
by < ZREOZT]
sim

where the Iverson bracket [-] counts one when the
condition is true or zero otherwise, and ng;, is the
number of calls to the one-step state-transition
function of x(t) along all the simulation runs (i.e.,
the total number of simulated points).

3. Case Study

The case study is an IP&TLC CPS that integrates
an IEEE14 power grid including users and gener-
ators, a TLC network, and various control units
(Di Maio, Stincardini, and Zio 2022). The Control
Center (CC) collects the power load demands
from the users and performs AC Optimal Power
Flow (OPF) calculations. Since the OPF returns
steady-state solutions, the model is discrete-time,
where time ¢}, = kAt, with At > 0 the (fixed) sim-
ulation time step and k € {0,1, ... }. Generators
and customers are denoted G and C, respectively;
synchronous condensers are modelled as PV

CPS modelling
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Figure 2.1 Steps for the calculation of the net-
work-level vulnerability.

generators (thus, they belong to G) with O[MW]
of both minimum and maximum active power
limits. For simplicity, but without loss of general-
ity, we assume the TLC to be perfectly working
and always available for the dispatchment.

The IP&TLC CPS reacts to the external stimu-
lus, denoted by uT(¢) = [pj(t),qi(r)], where
pa(t) and qq(t) contain the active and reactive
power demands of each customer at time f, re-
spectively. Their values are taken from (Di Maio,
Stincardini, and Zio 2022), using 30 days of his-
torical open data sampled every 15 minutes, made
available by TERNA (Terna 2023). For generali-
zation purposes, we process the TERNA data by
applying min-max normalization and, then, mul-
tiply the results by the nominal active and reactive
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Table 1 Repairment and failure rates of compo-

nents
Component ARep Arail
[p1  [h71]
Generator 24 3e-3
Transmission Line 12 3.5¢-3
Transformer 4 19e-3

power load demands of each customer in the
IEEE14 case.

The rest of the dynamic power grid variables
are vectors containing the variables of the corre-
sponding bus: py(t) and qg(¢) are the active and
reactive power generations, v,,(t) and v,(t) are
the voltage magnitudes and angles, and Tgen(t),
Ty ine(t), and Tppago(t) are the binary components
states, active (1) or down (0) for generators, trans-
mission lines and transformers, respectively.
Then, to track all the relevant variables, we define
the IP&TLC state vector x(t) as:

pa(t)
qq(0)
py(t)
q4(t)
vt |- (6)
Va(8)
TGen (t)
Tiine (t)
T[Trafo(t)

We assume that generators, transmission lines,
and transformers can fail and be repaired with the
rates in Table 1 (Di Maio, Stincardini, and Zio
2022); therefore, the evolution of 7gen(t),
Trine(t), and Zppag,(t) can be modelled by a bi-
nary Markov chain using the corresponding tran-
sition rates. At each time ¢, u(t) is passed to the
OPF solver, which returns the optimal power gen-
eration setup and the voltage magnitudes and an-
gles, defining the dynamical evolution of the var-
iables considering the states of the components. If
the OPF cannot be solved, we assume a full power
outage, yielding zero active and reactive power
generation.

The IP&TLC behavior is modelled and simu-
lated in Python using the AC OPF solver of Pan-
dapower (Thurner et al. 2018). We consider a time
step of At =15 minutes, which matches the
TERNA sampling rate and a mission time of
100[h], allocating a fixed computational time of

x(t) =
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Table 2 Threshold values considered for each IF

IF Thresholds

{0.00, 3.49, 11.83, 40.70, 140.00, 144.26,158.23,
1 217.84,472.40}

¢, 1{0,1,2,3,4,5,6,7,8}

{0.00, 3.49, 11.83, 40.70, 140.00, 144.26, 158.23,

¢ 217.84,472.40}
" {0.00, 3.24, 3.50, 4.30, 5.62, 7.47, 9.85, 12.76,
+ 16.20}

6[h], which is enough to simulate at least one hun-
dred scenarios, that will be used for benchmark.
Simulations are performed on an Intel i7 9750H
computer at 2.2 GHz.

3.1. Importance functions

We list four IFs that will be used for comparison
of the results. In all cases, we consider a fixed
number of retrials R; = 4, for any threshold level
i €{1,2,...}, whereas the number of main trials
R, is not set since we let the scenarios generation
continue until the computational time of 6 [h] is
reached.

Power generation mismatch (¢, )

Let s(¢) and s™(¢) be the actual and reference
complex power generations vectors at time ¢, re-
spectively. ¢, is the module, at each time ¢, of the
total differences between their apparent powers:

50 =) |1 [sif)],
=9

¢, is zero if the actual system condition is equal
to the reference one (normal conditions); ¢, > 0,
otherwise. The thresholds to be wused in
RESTART to spoon the retrials (see Table 2, 1%
row) are set by sorting in ascending order the ac-
tive maximum power ratings I—}"’ of each generator
J €9, and then, calculating Tj,; = BY, + Tj,
with T, = B*; in between T; and Ty, ny > 0
thresholds are added, that are quadratically dis-
tanced from the one previously added.
Down components (¢,)

¢, (t) counts, at each time ¢, the number of failed
components along the scenario evolution:

¢, (t) = # of failed components at time t.

Since ¢, can take values 0, 1, 2, ..., we set the
thresholds (see Table 2, 2™ row) to integer values,
starting from zero.
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Table 3 Computational effort for different scenario generation methods

MC RESTART
Ngim = 40648 (**)

IF §(T) §(Ty) &Ty) £(Ty) Asim
o} 0.0129 0.008 0.8327 0.8325 30280 (*)
¢, 0.0653 0.0059 0.3254 0.0548 32287 (%)
OB 0.0 0.0 0.0 0.0 32193 (%)
b, 04667 0.1974 0.9683 0.8921 38218 (*%)

(*), (**) Run in parallel.

Energy Not Supplied (¢5)

¢5(t) computes, at each time # the cumulative
sum of the differences between the actual active
power p;(t) delivered to the j-th customer and its

demand p;(t), i.e., the lack of energy:

b:0 =) (0,0 - ;) ifp;© <50,
jec

Network vulnerability (¢,)

¢4 () is that defined in Eq. (4) (see Section 2.2).

3.2. Results

Table 3 shows the different values of & when,
without loss of generality, the two lowest thresh-
olds i = {1, 2} are considered: & is calculated with
respect to the benchmark batch of simulations
generated by MCS and by RESTART when
driven by ¢4, ¢,, 3, and ¢,. In the Table, we also
report the number of simulation points ng;,, gen-
erated by the overall procedure.

For the case of MC, &(T;) is much larger than
&(T) for all the TFs, meaning that MCS allocates
computational efforts in simulating lower im-
portance zones (i.e., normal conditions that are
not significant for the sake of training a BBM).
This is evident in the case of ¢3 (ENS), which is
equal to zero, meaning that the simulation never
explores scenarios in which customers are not
supplied with energy. In general, £(T}) and &(T5)
for ¢, are larger, suggesting that ¢, seems to be
more suitable for relevant scenario exploration.

For the case of RESTART, £ is generally larger
than for MCS. Thus, RESTART is effectively ex-
ploring more relevant regions. In particular, ¢, is
the IF with the highest £(T;), implying that most
of the computational effort is allocated in relevant
regions, i.e., above the first threshold. Besides, it

explores the considered regions equally, i.e., the
small reduction of £(T,) with respect to £(T;) sug-
gests a good setting of the threshold values. On
the other hand, ¢,, ¢,, and ¢5 are only positive
when a disruption occurs. Indeed, the actual OPF
solutions differ from those in normal conditions
to account for the new topology of the power grid
and provide a new optimal control input, yielding
importance values different than zero only in
those occasions. This is not ideal since when noth-
ing happens, RESTART will act equivalent to
MCS.

Another issue is related to the reference value
used in the difference (that in normal conditions),
since we must simulate this reference at least
once, which can be time consuming. Besides,
such reference corresponds to one realization of
the external stimuli; therefore, we are forced to
use this realization throughout the new retrials so
that the comparison makes sense. These issues do
not arise using ¢,. In fact, it is always greater than
zero, increasing during those times of the day
where the components are used more.

To conclude, ¢, seems effective to drive
RESTART for the generation of relevant scenar-
ios of CPSs.

4. Conclusions

In this work, we tailor RESTART to the problem
of generating relevant scenarios of CPSs behav-
iors. We do it so by introducing a novel dynamic
IF that combines a centrality metric of the CPS
components with their susceptibility to failure. A
case study regarding an IP&TLC CPS confirms
that i) the exploration of RESTART depends
strongly on the selected IF, ii) typical vulnerabil-
ity metrics are not suitable for guiding RESTART
in the task of generating significant scenarios, and
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iii) the novel IF here proposed is, instead, effec-
tive. Future work will consist in using the gener-
ated scenarios to train the BBM of the CPS GBM.
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