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Safety assessment and verification have become more complex in the past years. Especially the incorporation of
machine learning components, and their black box nature, are proposing new difficulties to overcome. Therefore
new techniques are needed to judge the safety of machine learning components and further integrate those into
existing safety analysis methods. In this contribution we will provide a new method for safety analysis of a score
based binary classifier. The presented technique can output a single reliable value for the failure on demand. Latter
one can then be used inside a system safety analysis, as done for physical engineering systems. In particular we
will briefly mention a general approach for score based binary classifiers, as already applied for general systems.
Furthermore we will contribute a more refined method in the case of a normal distributed score. The main idea is
to incorporate confidential bounds on the parameters to obtain a function that serves as upper bound for the failure
on demand. Further analysis of the retrieved function will then provide a mathematically based single value for the
reliability. In the end of this work we will demonstrate this technique at the example of breast cancer detection and
evaluate the performance in this scenario.
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1. Introduction

In the last decade machine learning was one of

the most evolving fields inside computer science.

Stunning results have been achieved in a wide

range of tasks, across a manifold of fields. For

example genome classification in biology, Remita

et al. (2017). Or Regression inside there area of

earth observations, Huber et al. (2022). Even in

sparse domain the classical pipelines of feature

engineering, followed by a machine learning com-

ponent has been applied successfully, Jin et al.

(2020). Not only super human performance is pos-

sible, also domain experts can be outperformed

by machine learning, as shown by De Fauw et al.

(2018).

With all this positive examples of machine

learning there also raises the wish to use lat-

ter ones in safety critical systems. Due to their

complexity most advanced methods are black box

models and therefore predictions and outputs are

hard to explain or verify. Furthermore, the re-

maining uncertainty of systems are difficult to

measure, specially in open context applications.

Nevertheless we still want to have a quantified

measure of the remaining aleatoric and epistemic

uncertainty. Or different speaking, reliable values

for the remaining reducible and irreducible uncer-

tainty, Hüllermeier and Waegeman (2019). In this

paper we will therefore compute the probability

of failure or more precise an upper bound for the

probability of failure. This is highly important to

judge a system verification, in particular under the

classical risk acceptance approaches like As Low

As Reasonable Possible (ALARP), Globalement

Au Moins Aussi Bon (GAMAB) and Minimal

Endogenous Mortality (MEM). To obtain these

values is possible, even in the case of a black box

models, and is presented by Lucas et al. (2008).

But they also have shown that the number of nec-

essary test cases can be infeasible high in practice,

for example in the case of complete black box
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components. Thus it is important to individually

tailor the safety assessment to the properties of

each system. Then tight and more important, reli-

able, failure rates can possibly be achieved. Within

this paper we contribute to this pool of techniques

by analysis score based binary classifier. In par-

ticular the case of a normal distributed score is the

major focus inside this work. On top of that we are

going to demonstrate the techniques in the case of

breast cancer recognition.

2. Method

First we will clarify the notation and our definition

of score based binary classifier. We denote the data

points with x ∈ R
n and the score function with

s : Rn → R. In this context a score based binary

classifier f is then given by

f (x) = H ◦ s (x) .
The function H is the Heaviside step function.

Alternatively a general step function over an ar-

bitrary interval (−∞, c] could be used, which is

equivalent to this case. Simply because every clas-

sifier of that kind can be converted, by a shift

of the score function, to the one above. In this

setting, a linear support vector machine is given

by s (x) = 〈w, x〉 + b, where w ∈ R
n and b ∈ R

are obtained at training.

For a binary classifier there are only two pos-

sible failures that could occur, namely classifying

a data point x∗ from class 1 to class 0 and vice

versa. We can also directly state the probability of

that occurrence as

P (f (x∗) = 0) = P (s (x∗) ≤ 0) . (1)

Further we assume that our given data are from

the same underlying probability distribution. This

distribution could be different for each class and

also possible unknown.

2.1. Measure Concentration Estimates

As described by Lucas et al. (2008), one can use

concentration of measure inequalities to obtain a

upper estimates for the probability of failure. The

critical aspect with this approach is the number

of necessary test data that need to be examined

in order to retrieve a reliable statement. Another

important factor is the image set of the input

data variables. In particular we need to know the

space of this input features or a way to obtain

the verification diameter of the system. On top of

that, Lucas et al. (2008) have shown that as more

information about the system is known, as closer

the upper estimate possibly are to the real values.

Consequently we impose an additional informa-

tion on the system.

2.2. Normal distributed Score

Next we consider the situation when s(X(1)) ∼
N (μ1, σ1), so when the score is normal dis-

tributed for one class, here we choose 1. Also

class 0 could be normal distributed, which we will

treat in subsection 2.2.4 since it is a little different.

Mathematically we view s(X) as independent and

identically distributed random variables, and we

will also use capital letter for the random variable.

This might arguably be two strong assumptions

but since the normal distribution plays such an

important role in theory and practice the latter one

is apposite to consider. Further this assumption

is for instance fulfilled if the input data are mul-

tivariate normal and we are considering a plain

Support Vector Machine, a basic machine learning

scenario. In contrast to other approaches, like Bra-

band and Schäbe (2020), we only put assumptions

on the score and not on the input. Nevertheless

a probabilistic view on the data is necessary to

encounter for aleatoric uncertainty as well. Next

we use the standard estimators

μ̄1 =
1

N1

N1∑
j=1

s
(
x(j)

)
, (2)

σ̄1 =

√√√√ 1

N1 − 1

N1∑
j=1

(
s
(
x(j)

)− μ̄1

)2
. (3)

As a result equation (1) can easily be computed by

P (H (s (x∗)) ≤ 0) = Φ

(
− μ̄1

σ̄1

)
. (4)

Here we still have not considered the uncertainty

of the estimators itself, so we are going to include

confidence bound for those as well.
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2.2.1. Confidence Bounds on Estimators

To include confidence bounds one can refer any

statistical book, like Georgii (2015) (Satz 9.17),

to obtain that μ̄1 and σ̄1 are independent. Addi-

tionally, for confidence γ, η in (0, 1) probabilistic

bounds are given by

P

(
μ̄1 − tN1−1 (1− γ) · σ̄1√

N1

≤ μ1

)
= 1− γ

(5)

P

(
σ2
1 ≤

N1 − 1

χN−1 (1− η)

)
= 1− η,

(6)

where χN−1 is the inverse of the cumulative

distribution function from a χ2-distribution with

N1−1 degrees of freedom and tN−1 is the inverse

of FtN1−1
(1− ·) where FtN1−1

is the cumulative

distribution function for the students t-distribution

with N1−1 degrees of freedom. To save space we

will denote the event in equation (5) with M and

the event described in (6) with S.

Now we only need two technical assumptions

to state the resulting probability. First that μ̄1 >

0, which is a mathematical formulation that the

classifier is to some extend sufficient to solve the

task. The second one is

−μ̄1 + tN1−1 (γ)
σ̄1√
N1

< 0. (7)

For fixed γ this will be fulfilled for large N1 due

to lemma 2.1, or in any case where γ ∈ (
1
2 , 1

)
,

due to the previous assumption. Finally we obtain

the upper bound function, as

P (s (x∗) ≤ 0) (8)

= P (s (x∗) ≤ 0 |M ∧ S) · P (M ∧ S)

+ P (s (x∗) ≤ 0 | ¬M ∨ ¬S)︸ ︷︷ ︸
=: P0≤1

P (¬M ∨ ¬S)

(9)

≤ Φ

⎛
⎜⎜⎜⎜⎜⎜⎝
−μ̄1 +

tN1−1(γ)σ̄1√
N1√

N1−1
χN1−1(η)

σ̄1︸ ︷︷ ︸
=: ν(γ,η)

⎞
⎟⎟⎟⎟⎟⎟⎠ (1− γ) (1− η)

+ ((1− γ) · η + γ · (1− η) + γ · η) . (10)

We denote the function in equation 10 with g, or

g(N) if we want to stress the dependence on N .

As long as condition (7) is fulfilled, g serves as an

upper for any parameters (γ, η) ∈ (0, 1)
2
.

Lemma 2.1. The sequence {|tN−k (γ)|}N is

bounded for every fixed γ ∈ (0, 1). Hence

lim
N→∞

tN−k (γ)√
N

= 0, ∀k ∈ N. (11)

2.2.2. Analysis of the Upper Bound Function

Next we have a short analytical look at the func-

tion g. We will only state the developed theorems

without proof. Simply to not exceed the scope of

this paper and to not get lost in the technicalities.

Theoretical interesting is that the function g

provides an upper bound for almost all parame-

ters, while the actual failure rate is independent of

those. Therefore we can simply take the minimum

of g, if it exits, as our failure on demand. This

can be obtained by any method of choice. In our

simulation and application example we used the

heuristic given in algorithm 1. We repeatable com-

puted the minimum in each variable via gradient

decent method, until convergence. This approach

was chosen because g is differentiable and the

gradients can be explicit computed, as given in

lemma 2.2. Additionally theorems 2.1, 2.2 show

that the function g, viewed as uni variate function,

hold unique minima.

Theorem 2.1. The function g1,γ0 : (0, 1) →
R, η �→ g (γ0, η) with γ0 ∈ (0, 1) has a minimum

for N large enough. Furthermore the restriction

g1,γ0 (0,c) is convex, for every c < 1
2 .

Theorem 2.2. The function g2,η0
: (0, 1) →

R, γ �→ g (γ, η0) with η0 ∈ (0, 1) has a global

minimum for N large enough. Furthermore the

restriction g2,η0
(
1−F

tN−1(
√

N
μ̄
σ̄ )

, 12

) is convex.

Lemma 2.2. The function g is twice differentiable
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and the derivatives are given as follows

∂g

∂γ
(γ0, η0) =

1√
2π

exp

(
−ν (γ0, η0)

2

2

)

·
(
∂ν

∂γ
(γ0, η0)

)
· (1− γ0) (1− η0)

− Φ (ν (γ0, η0)) (1− η0) + (1− η0) , (12)

∂g

∂η
(γ0, η0) =

1√
2π

exp

(
−ν (γ0, η0)

2

2

)

·
(
∂ν

∂η
(γ0, η0)

)
· (1− γ0) (1− η0)

− Φ (ν (γ0, γ0)) (1− γ0) + (1− γ0) , (13)

where the derivative of ν is given as

∂ν

∂γ
(γ0, η0) = −

√
π ·

√
χN−1 (η0)

N
· Γ

(
N−1
2

)
Γ

(
N
2

)
·
(
1 +

tN−1 (γ0)
2

N − 1

)N
2

, (14)

∂ν

∂η
(γ0, η0) =

2
N−3

2 Γ
(
N−1
2

)
√
N − 1

·
(
− μ̄

σ̄
+

tN−1 (γ0)√
N

)
· χ1−N

2

N−1 (η0)

· exp
(
χN−1 (η0)

2

)
. (15)

2.2.3. Numerical Issues

The term
Γ(N1−1

2 )
Γ(N1

2 )
will cause some numerical

problems for big values, since both tend to infinity.

This problem can be overcome with an approxi-

mation. We denote the sequences

lN : =

⎧⎪⎨
⎪⎩

1

�N−1
2 �

√⌊
N−1
2

⌋− 1
4 , if N is even,

1

�N−1
2 �

√⌊
N−1
2

⌋
+ 1

4 , if N is odd,

(16)

uN : =

⎧⎪⎨
⎪⎩

1

�N−1
2 �

√⌊
N−1
2

⌋
, if N is even,

1

�N−1
2 �

√⌊
N−1
2

⌋
+ 1

2 , if N is odd.

(17)

Then with Gautschi’s-inequality and equation

(1.2) form Alzer (1993) one can prove that lN is

Algorithm 1 Heuristic to find minima

Require: μ̄ > 0, σ̄ > 0, N > 0, ε > 0

Ensure: Return value is a valid upper bound

1: γ ← 1
4 
 Initialize γ

2: η ← 1
4 
 Initialize η

3: m← g (γ, η) 
 Initialize minimum function

value

4: change ←∞ 
 Variable to store current

change

5: repeat
6: γ ← argmin

γ̃∈(0,1)

g2,η (γ̃) 
 For instance with

gradient descent or Newton’s method

7: η ← argmin
η̃∈(0,1)

g1,γ (η̃) 
 For instance with

gradient descent or Newton’s method

8: change ← |m− g (γ, η)| 
 Update

current change

9: m← g (γ, η) 
 Update current minimum

10: until change < ε

11: if −μ̄+
¯tN−1(γ)σ̄√
N

< 0 then
12: return m

13: else
14: return 1

15: end if

a lower bound and uN is an upper bound for the

quotient. As the difference of these bounds tend to

zero we retrieve the following lemma 2.3.

Lemma 2.3. The sequences lN and uN are ap-

proximating
Γ(N−1

2 )
Γ(N

2 )
, so formally it holds that

lim
N→∞

∣∣∣∣∣lN − Γ
(
N−1
2

)
Γ

(
N
2

)
∣∣∣∣∣ = 0 (18)

lim
N→∞

∣∣∣∣∣uN −
Γ

(
N−1
2

)
Γ

(
N
2

)
∣∣∣∣∣ = 0. (19)

We recommend to use lN as the approximation

since it seems to be more tight then the mean of

lN and uN .

2.2.4. Other Side Error

Interestingly the same mathematical approach for

the vice versa error, namely to classify a data

point of class 0 to class 1, is more challenging.

The estimates will not be applicable in the same
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way. Nevertheless there is an easy possibility to

also use the approach above, by “mirroring” the

classifier. Therefore we look at the classifier with

score function s′ (x) = −s (x), which outputs the

same results, only with switched classes. Now the

analysis from above can be applied and returns

the desired value. On first look one may think

that the points with score exactly zero can cause

problems. This is, at least theoretically, not the

case. For exact mirroring we can slightly modify

the Heaviside step function to also map 0 to value

1. Then the condition in (8) and (9) changes to

strictly smaller. Nevertheless, since we have a

continuous probability distribution, equation (10)

stays unchanged.

2.2.5. The influence of N

In the end of this section we will shortly men-

tion the effect of increasing amount of test data.

The intuition that increasing N also reduces the

remaining uncertainty does reflect in the upper

bound function. Corollary 2.1 shows that mathe-

matically the upper bound function is point-wise

decreasing, and therefore also the upper bound

for the failure probability must decrease. Only

numerical issues, like for instance an inaccurate

determination of the minimum, can cause this

effect to be false.

Corollary 2.1. For fixed γ0, η0 ∈ (
0, 1

2

)
,

there exists N0 ∈ N such that the sequence(
g(N) (γ0, η0)

)
N≥N0

is monotone decreasing.

3. Simulation

The goal of this simulation is to verify the appli-

cability, even under noisy data. To do so we used

Matlab (R2022a) to simulate two-variate normal

distributed data.

3.1. Outline and Parameters

For each class we used 1000 data points for train-

ing, as seen in figure 1, and 200 points for testing.

The mean and covariance matrices Ci are given as

μ1=

(−1.0
−3.0

)
,C1=

(
1.0 0.0

0.0 2.0

)
, (20)

μ2 =

(
1.0

1.2

)
,C2=

(
3.0 1.0

1.0 1.0

)
. (21)

Additionally we added noise in form of white

Gaussian noise samples of power −15, with the

internal Matlab function “wgn”. Afterwards we

used the provided function “fitcsvm” to train a

linear Support Vector Machine.

3.2. Evaluation

The resulting score should by the underlying

mathematical theory, be uni-variate normal dis-

tributed. Therefore we performed a Jarque-Bera-

Test (JB-Test) and Anderson-Darling-Test (AD-

Test) with 5% Significance, which confirmed the

normality. A visual validation in form of a his-

togram is printed in figure 1, which also shows

the influence of the noise. Afterwards we used the

method described in section 2, to compute the po-

tential minimum of our upper bound function. In

particular we used heuristic 1 together with a gra-

dient decent method. The only difference is that

we computed step 7 with the old γ values, in order

to update the shared learning rate for the next

iteration. All failure rates are visualized in table 1.

The total rate of falsely classified points is 0.025.

As we see in the difference of False Classification

Table 1. The failure rate and upper bounds for falsely

classifying a data point of class 1 to class 0.

Failure Verification Type Rate

False Classification Rate (FC) 0.03
Probabilistic Evaluation
with Estimators (PEE) 0.041835
Upper Bound with Confidence (UPC) 0.098434

rate (FC) and the Probabilistic Evaluation upper

bound with Estimator (PEE), the introduction of

this probabilistic framework increases the error

rate. This is only natural as additional to epis-

temic uncertainty, the PEE captures also aleatoric

uncertainty. Further the use of confident bound

on the estimators, instead of the estimator usage

only, seems to have a strong effect and reflects

in the Upper Bound with Confidence (UPC) rate.

That possibly originates in the low number of test

data, and therefore perfectly mirrors the uncer-

tainty contained. In the opposite scenario, where
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sufficient test data is given, we expect the value

to decrease, as already theoretically confirmed in

2.1.

In table 2 small variations in N are displayed

and confirm the theoretical statement. Only the

value for N = 300 doesn’t seem to fit but might

also be strongly influenced by the problematic

quotient. Additionally in this case, PEE=0.053325

and FC=0.053333 has increased as well. This

could be the consequence of noise, since we can

directly see in the histograms in figure 1 that the

noise has a strong influence. However this exam-

ple shows that even unexpected increases in the

failure rate, will reflect in the UPC.

As mentioned in the beginning the goal was to

validate the applicability and therefore noise can

not be neglected. For the numerically back up of

the theoretical proven properties, another simula-

tion study needs to be done. We did investigate

this relation only for small values in this con-

crete example because our implementation uses

the exact computation of the quotient described

in subsection 2.2.3. As the focus these simulation

was different, the avoidance of numerical prob-

lems was primarily important.

Table 2. The failure rate and upper bounds for falsely

classifying a data point of class 1 to class 0 und

different amount of test data.

Number of Test Points Upper Bound
(N) with Confidence (UPC)

150 0.10737
200 0.098434
250 0.094702
300 0.10583

4. Application: Breast Cancer
Prediction

In this application we are solving the task of breast

cancer prediction. Therefore we use the Wisconsin

Breast Cancer Database (January 8, 1991), which

is publish at Wolberg (1995) and initially used

in Mangasarian and Wolberg (1990). It holds 699

data samples, of which 483 are benign and 241

Fig. 1. At the top is a surface plot for the resulting
upper bound function, given in equation 10, for class 1
of the simulation data. In the middle are the histograms
of the score displayed for each class. At the bottom is a
scatter plot of the training data.

are malignant. Of these samples 16 had missing

values therefore only 683 had been used. We en-

countered all 9 features, which are in the range

of [0, 10]. Detailed information are also given at

Wolberg (1995) and not provided here. We ran-

domly split each class into half for training and

used the other half for testing and computations.

As classifier a linear support vector machine has

been used, with a overall false classification rate

of 0.032164.

Our next step is the analysis of the failure on

demand and an upper bound for this occurrence.

The pipeline, presented in the next subsection, can

be adapted to any other application task, which

fulfills the assumptions.



1230 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

4.1. Evaluation

Next the same analytical steps as in section 3

have been performed. First the distribution of the

score has been tested for normality with JB-Test at

5% Significance. The score class 0, which corre-

sponds to benign, is not normal distributed, but the

score for class 1, which corresponds to malignant,

is normal distributed. See also figure 2 for vi-

sual validation. If we look at the resulting bounds

in table 3, we see the same qualitive behaviour

as in our simulations and expectations from the

underlying model. The introduction of random

input increases the theoretical failure, as it also

encounters for aleatoric uncertainty. Further the

introduction of confidential bounds on the param-

eters is increasing the upper failure rate. Shortly

Table 3. The failure rate and upper bounds for falsely

classifying a data point.

Failure false benign false malignant
Verification classification classification

FC 0.045045 0.0083333
PEE 0.015642 0.029812
UPC 0.052513 0.096433

to mention is that a non-normal score leads to a

breakdown of the proposed method, as seen in

table 3, for the benign class. Even if the UPC rate

might seem correct it is only a consequence of

aleatoric uncertainty and not reliable.

5. Discussion and Future Work

In this work we presented a new technique to

compute an upper bound for the error on demand,

namely in the case of normal distributed score

for score based binary classifier. We evaluated the

correctness of our method in an simulation which

confirmed the theoretical computations. Addition-

ally we provided an application in breast cancer

classification, which backed up the simulations

and have shown that the property of normal dis-

tribution is needed and can not be relaxed. It

still is an open question on how tight the upper

bound really is and if it is close enough to the

Fig. 2. At the top is a surface plot for the resulting up-
per bound function, given in equation 10, for false ma-
lignant classification. In the middle are the histograms
of the score, displayed for each class. At the bottom is a
scatter plot of the training data. To make a visualization
possible a dimensional reduction to 3 dimensional has
been performed with the Matlab function “pca”.

actual probability of failure. Furthermore it still

is unknown how many real applications have a

score of approximately normal distribution and

how ”close” to a normal distribution the score

has to be, in order to provide reliable results. As

we have seen the technique breaks down if this

assumption is violated, so one may ask: how close

is close enough? In particular for practitioners, it

might be interesting at which significance level

the normality test have to be performed, so that

the technique performs well. Latter question can

possibly be answered in further simulations.
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