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The early design stage is the most effective time to introduce cost-effective measures to increase the resilience of 
the engineering systems against accidents and disruptive events, yet, since the current resilience assessment 

methodologies require sufficient knowledge on system characteristics and accidents scenarios, the resilient design 

is usually overlooked at this stage. This paper proposes a practical methodology for resilience assessment at the 

early design stage and links the qualitative assessment of system characteristics and expert judgment to a dynamic 

quantitative resilience assessment. In particular, the resilient characteristics of a system is identified and evaluated 
by the experts. Then, Fuzzy Analytic Hierarchy Process (AHP) is used to evaluate the contributing factors of the 

resilient design. Finally, Dynamic Bayesian Network (DBN) is used to make a dynamic mathematical model that 

represents the system response to disruptive events and integrates the identified system characteristics and expert 

judgment into a model that quantifies the dynamic resilience curve. The application of the methodology is 

demonstrated in a carbon capture and storage (CCS) system against the loss of containment accident.  This paper 
presents a feasible methodology for the industries to introduce the system resilience at the early design stage and 

helps them to design safer, more reliable and available systems.   
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1. Introduction 
The goal of resilient assessment, a  rapidly 

developing field in engineering, is to design and 

manage complex systems that can resist and adjust 

to unforeseen interruptions or failures. It highlights 

the significance of designing systems that are 

flexible and adaptable to changing circumstances 

in addition to being reliable (Ahmadi, Saboohi and 

Vakili 2021, Mottahedi, et al. 2021). The existing 

methods for analysing resilience are complicated, 

demand a deep grasp of safety, and require 

advanced knowledge on accident scenario 

modelling, rendering them unavailable and 

inaccessible for many industries, specially at the 

early design stage when these knowledge are not 

sufficient (Dinh, et al. 2012, Arcuri, et al. 2022). 

This paper provides an accessible methodology to 

evaluate the resilience of the systems at the early 

design stage amid deficient knowledge on system 

characteristics. Firstly, the attributes of a  resilient 

design in an engineering system is defined. Expert 

judgment can then be used to evaluate these 

attributes contribution on the resilience of the 

system in a qualitative manner. These qualitative 

evaluations can also be used to provide pairwise 

comparison of resilient attributes by the Fuzzy 

Analytic Hierarchy Process (AHP) method to 

dedicate a weighting for each attribute of the 

resilient design. The outcome of this analysis can 

then be integrated into a dynamic Bayesian 

network (DBN) to probabilistically calculate the 

resilience and provide a transient resilience curve. 
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The application of the proposed methodology is 

applied to the resilience assessment of a  Carbon 

Capture and Storage (CCS) system of a process 

plant at the early design stage that may undergo 

Loss of Containment (LOC) accident and 

resilience curves are calculated to show the 

dynamic transient response of the plant to this 

disruption. 

The remainder of the paper is organized as follows: 

in Section 2, the attributes of the resilient design are 

defined and the methodology to evaluate the 

system resilience at the early design stage by DBN 

is introduced ; in Section 3, the calculation of 

weightings of resilient attributes by fuzzy AHP is 

discussed; in Section 4, the methodology is applied 

on the case study; finally, Section 5 provides some 

concluding remarks. 

2.Resilience Assessment at The Early Design 
Stage 

At the early design stage, the knowledge on 

system’s capabilities in responding to failure and 

disruptive events is very limited. Therefore, we 

define some general characteristics of resilience to 

enable modelling the system. Firstly, we define 

resilience as the capability of any engineering 

system to survive the failures and recover to 

normal condition. Two main attributes are, 

therefore, defined as survivability and 

recoverability (Hollnagel 2013). Each attribute 

also relies on other detailed characteristics that is 

called metrics, and each metric is dependent to 

some characters of the system called as indicators. 

These characteristics are carefully gathered from 

literature and defined in detail in Table 1 for the 

survivability of the system. 

Table 1. Subcategories of the system survivability 

Metric Indicator 

Early 

Warning 

Diversity of Monitoring  

Duplication of Monitoring  

Operator Knowledge  

Robustness 

 

Safety Margin 

Reliability - Equipment Design  

Reliability - Predictive Maintenance 

Reactive Maintenance  

Management of Change  

Absorptive 

Capacity 

Operator Knowledge  

Administrative Knowledge 

Segregation of Equipment 

Layers of Safety Systems 

Design of Safety Systems 

Emergency Procedures  

Tests of Emergency Response Systems 

Diversity of Emergency Services  

Fail-Safe Design  

Flexibility 

Redundancy of Safety-Critical Utilities 

Modularity of Unit Operation  

Modularity of Facilities  

Table 2 defines the detailed characteristics of the 

system that contribute to system recoverability. 

Table 2. Subcategories of the system 

recoverability 

Metric Indicator 

Resourcefulness 

Modularity of Unit Operation 

Modularity of Facilities  

Administrative Knowledge  

Throughput Adaptability  

Controllability  Response to Control Measures  

Reconfigurability 
Redundancy  

Reconfigurability of Flowsheet 

Interested readers can refer to the author’s previous 

work for details on defining these attributes of the 

resilient design (Hoseyni, Vesey and Cordiner 

2023). 

These attributes of the resilient design can be sent 

to the experts to judge their quality and presence in 

the studied system to evaluate the capabilities of 

the system to respond to disruptions. A DBN 

model can also be used to translate these 

characteristics into a mathematical model that 

quantifies the resilience. 

2.1. DBN Model for Resilience Assessment 

Dynamic Bayesian Network (DBN) is a  

probabilistic graphical model that depicts the 

temporal dependencies of a  system and offers a 

framework for modelling and reasoning on 

complicated systems throughout time 

(Ghahramani 1998). DBN has been recently used 

to model the resilience of engineering systems 

. In a DBN, the 

system is modelled as a directed acyclic graph 

(DAG), where each node in the network stands in 

for a  random variable and the arcs between nodes 

signify their probabilistic interdependencies.  Arcs 

are connected from parent nodes to child nodes in 
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DBN. The nodes that are not connected to any 

parent nodes are referred to as root nodes and are 

assigned marginal probabilities. Conditional 

Probability Table (CPT) is used in DBN to specify 

the conditional dependencies of nodes given their 

parents. Using the CPTs and the Markov 

assumption, the probability of the variables in a 

DBN can be represented as follows: 

( ) = ( | , )  (1) 

where ( ) is the parents of node  in the 

DAG at time step t-1 and  represent the state of 

node Xi at time t (Murphy 2002). 

The attributes of the resilient design can be 

mapped into a DBN model to mathematically link 

the attributes presented in nodes to each other. 

Fig. 1 shows the proposed DBN model that is 

introduced by the attribute presented in Tables 1 

&2. 27 indicators are assigned to the root nodes 

which will be associated with marginal 

probabilities and are connected with arcs to their 

corresponding metrics. CPTs will be built to 

specify the probability of a  node given the state of 

its parent nodes and will be calculated by the 

fuzzy AHP methodology. 

 

Fig. 1. The proposed DBN model for resilience 
assessment 

As can be seen in Fig. 1 the attributes are finally 

linked to the “survivability” and “recoverability” 

nodes where these 2 nodes are also connected to 

the “system’s performance state” node which is 

also connected by the “disruptive event” node 

(Hoseyni and Cordiner 2023). 

To run the DBN model, we need to assign marginal 

probabilities to the 27 root nodes of Fig. 1 (i.e., 27 

indicators shown in Tables 1&2). For doing that 

expert opinion can be collected and transformed to 

numbers by probability elicitation techniques such 

as Delphi, D number theory or SHELF tool 

(O'Hagan, et al. 2006). This part is beyond the 

scope of this paper and for that we will assume that 

all the indicators are present in our system with 

0.99 probabilities. In other words, we assume that 

the failure or malfunction of the system that results 

each attribute not to be present is 1%. If the 

probability elicitation from expert judgment or 

historic data become available, then the obtained 

probabilities can be updated in the marginal nodes. 

After assigning marginal probabilities for the root 

nodes, we need to build CPTs that shows the 

contributing weights and interdependencies of the 

child nodes and parent nodes. Fuzzy AHP, a multi-

criteria decision-making tool, is used for that 

purpose which is discussed in next section in detail. 

3. Fuzzy AHP  

Fuzzy AHP (Analytic Hierarchy Process) is a  

development of the AHP technique that helps 

decision-makers deal with the uncertainty and 

ambiguities that frequently appear in decision-

making. In fuzzy AHP, instead of employing 

exact numerical values, pairwise comparisons 

between criteria  are conducted using linguist ic  

terminologies like "slightly more important" or 

"much more important". The degree of each 

term's membership on a scale from 0 to 1 is then 

represented by fuzzy numbers that are mapped 

onto these linguistic phrases (Saaty 2001). 

Fuzzy AHP can be used to make the pair-wise 

comparison of the nodes of the DBN model and 

build the CPTs. In the context of DBNs, Fuzzy 

AHP can be used to obtain conditional 

probabilities by incorporating multiple criteria  or 

dimensions that may affect the probability 

distribution of a  given variable (Wang, et al. 

2017). Expert judgment is, firstly, used to make a 

pairwise comparison of the contributing factors of 

each node where experts are asked to make a 

qualitative comparison on pairs of contributors 

based on qualitative terminologies presented in  

Table 3. 
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Table 3. Triangular fuzzy AHP conversion scale 

(Bozbura, Beskese and Kahraman 2007) 

Qualitative Terminology Triangular 
fuzzy scale 

Triangular 
fuzzy 

reciprocal 
scale 

Just equal (1, 1, 1) (1, 1, 1) 

Equally important (1/2, 1, 3/2) (2/3, 1, 2) 

Weakly more important (1, 3/2, 2) (1/2, 2/3, 1) 

Strongly more important (3/2, 2, 5/2) (2/5, 1/2, 2/3) 

Very strongly more important (2, 5/2, 3) (1/3, 2/5, 1/2) 

Absolutely more important (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

Triangular fuzzy AHP conversion scales shown in  

Table 3 are then used to change the qualitative 

terminology into Fuzzy numbers. Then, Chang’s 

extent analysis method (Chang 1996) is used to 

calculate the weights of each contributor. In this 

method, the fuzzy synthetic extent is defined for 

the ith criteria  using Eq. (2): 

= (     (2) 

Then, the degree of possibility of M2= (a2,b2, c2  
M1=(a1,b1, c1) is calculated using Eq. (3): 

( ) = ( ) =

1                                              

0                                           

             
        (3) 

The possibility that a  convex fuzzy number Mi is 

greater than k other convex fuzzy numbers i= 

(1,2,…, k)  is: 

( , , … , ) = min ( ) (4) 

Assuming that d’(Ai)=minV( ) for 

k=1,2,..,n and k i, the weight of the contributors 

is defined as: 

W’= ( d’(A1), d’(A2), … , d’(Ai))T (5) 

Final weight of the contributers is calculated by 

normalizing the weight vector of Eq. (5). 

4. Case Study 
A post-combustion CCS system is considered to 

apply the methodology. As schematically shown in 

Fig. 2, the CO2 that is produced from fuel 

combustion or other process activities is captured, 

compressed and sent to the storage section to be 

injected into a reservoir. This system is prone to the 

LOC and release of captured carbon to the 

environment which we consider it as the disruptive 

event and model the system for its resilience. 

The DBN model proposed in Fig. 1 is used to 

model the resilience of the CCS system in case of 

the LOC accident which has environmental 

impacts. The survivability of the system to absorb 

the disruption as well as the recoverability to 

restore from the disrupted state to a normal 

operating state is quantified. 

 
Fig. 2. A schematic view of the CCS system 

(Paltrinieri, et al. 2014) 

To make the DBN model of Fig.1 successfully 

analyse the disruption, we need to define the 

marginal probabilities of the 27 indicators of 

resilient shown in Tables 1&2 (parent nodes of the 

DBN model in Fig. 1) with marginal probabilities. 

These probabilities can be estimated by expert 

judgment and probability elicitation techniques. In 

this work we assume that the indicators are present 

in the system with 99% probability.  

For building the CPTs that is used to relate the 

probabilistic interdependencies of other nodes, 

fuzzy AHP is used to find the weights of the 

contributors that will be used as conditional 

probabilities. Questionnaire are provided to expert 

to judge the pairwise comparison of the indicators 

using the linguistic terminology of Table 3. For 

example, the node “Early warning” in Fig. 1 is the 

child node of 3 other nodes, namely “Diversity of 

Monitoring”, “Duplication of Monitoring” and 

“Operator Knowledge”. Experts are asked to 

compare each pair of nodes and rate their 

importance based on the qualitative terminology of 
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Table 3. The pairwise comparison of the 

contributors of the “Early Warning” node is 

collected from the experts and their judged 

terminology is converted to triangular fuzzy scales 

as shown in Table 4. 

Table 4. Pairwise comparison of the “early 

warning” node 

Early 

Warning 

Diversity of 

Monitoring  

Duplication 
of 

Monitoring  

Operator 

Knowledge  

Diversity of 

Monitoring  

(1, 1, 1) (2/3, 1, 2) (1/2, 2/3, 1) 

Duplication 
of 

Monitoring  

(1/2, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3) 

Operator 

Knowledge  
(1, 3/2, 2) (3/2, 2, 5/2) (1, 1, 1) 

As an example, the experts decided that the 

“Diversity of Monitoring” is equally important 

with “Duplication of Monitoring” or “Operator 

Knowledge” is weakly more important than 

“Diversity of Monitoring” and strongly more 

important than the “Duplication of Monitoring”. 

Chang’s extent analysis method (Chang 1996) is, 

then, used to calculate the weights of each 

contributor to the “early warning” node using Eqs. 

2-5. The normalized weights of the early warning 

node is calculated as 0.240, 0.210 and 0.550 for 

Diversity of Monitoring, Duplication of 

Monitoring  and Operator Knowledge respectively. 

The expert judgment is conducted for all the 

pairwise comparison of the nodes and fuzzy AHP 

and Chang’s extend analysis is used to find their 

normalized weighting. Results shown as the 

dependencies of parent nodes on child nodes 

quantified by the conditional probabilities are 

shown in Table 5.  

Table 5. Conditional probabilities of the resilient 

contributors  

Child Node Parent Nodes Conditional 
Probability 

Survivability 

Early Warning 0.273 

Robustness 0.201 

Absorptive Capacity 0.294 

Flexibility 0.232 

Recoverability 

Resourcefulness 0.300 

Controllability  0.374 

Reconfigurability 0.326 

Early Warning 

Diversity of 

Monitoring  0.240 

Duplication of 

Monitoring  0.210 

Operator Knowledge  0.550 

Robustness 

 

Safety Margin 0.280 

Reliability - Equipment 

Design  0.000 

Reliability - Predictive 

Maintenance 0.000 

Reactive Maintenance  0.280 

Management of 

Change  0.439 

Absorptive 

Capacity 

Operator Knowledge  0.142 

Administrative 

Knowledge 0.000 

Segregation of 

Equipment 0.073 

Layers of Safety 

Systems 0.142 

Design of Safety 

Systems 0.142 

Emergency Procedures  0.142 

Tests of Emergency 

Response Systems 0.142 

Diversity of 

Emergency Services  0.073 

Fail-Safe Design  0.142 

Flexibility 

Redundancy of Safety-

Critical Utilities 0.620 

Modularity of Unit 

Operation  0.000 

Modularity of Facilities  0.380 

Resourcefulness 

Modularity of Unit 

Operation 0.000 

Modularity of Facilities  1.000 

Administrative 

Knowledge  0.000 

Throughput 

Adaptability  0.000 

Controllability  
Response to Control 

Measures  1.000 

Reconfigurability 

Redundancy  0.500 

Reconfigurability of 

Flowsheet 0.500 

As can be seen in Table 5, Absorptive Capacity and 

Controllability has the greatest contribution to 

Survivability and Recoverability capabilities of the 

CCS system. Moreover, Redundancy of Safety-

Critical Utilities as a part of the Flexibility of the 

system has the greatest contribution weight  

compared to other nodes. It can also be seen that 

the pairwise comparison by fuzzy AHP and expert 

judgment resulted in 0 contribution of 7 nodes 

representing their null contribution.  
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To model the resilience of the CCS system, the 

disruption node of Fig.1 is modelled to be either in 

“True” or “False” state where the probability of 

disruption (i.e., LOC accident) to be “True” is 

assumed to be 1%. The system’s performance node 

is assigned with three states, namely St0, St1, and 

St2 representing normal performance level before 

disruption, disrupted minimum performance and 

restored performance after recovery respectively. 

The resilience, in each time frame, is defined as the 

probability of the system to be in normal 

performance or the restored performance (i.e., 

Resilience=P(St0)+P(St2)) (Tong, Yang and 

. 

The DBN model is analysed with the quantified 

values of Table 5 and the mentioned assumptions. 

The resulting resilience curve is shown in Fig. 3. 

 
Fig. 3. Dynamic resilience curve of the CCS system 

against LOC accident 

 

As can be seen in Fig. 3, after the disruption 

happens at t=0, the performance of the system 

drops immediately until it reaches its minimum 

value of 0.23 at t=4. Then, recovery of the system 

takes place and system restores the performance 

level. At t=100, The performance level is equal to 

0.997 which shows almost full recovery of the 

system. 

From the resilience curve of Fig. 3, the time 

required to recover the 90% of the lost performance 

is equal to 34 time steps. 

It should be noted that the sensitivity of the 

resilience curves to expert judgment and its 

potential bias should be addressed by sensitivity 

analysis. This is important because the resilience 

curve is intended to inform decision-making, and 

any bias in the assessment could lead to suboptimal 

decisions. 

5. Conclusions 
In this paper, a  practical methodology is proposed 

to quantify the resilience curve at the early design 

stage when sufficient information on the process 

and system capabilities is not available. A 

quantitative model, based on DBN, is introduced to 

perform the resilience assessment. The DBN 

model relates the expert judgment and its 

qualitative assessment of system capabilities to the 

dynamic resilience curve. Fuzzy AHP is used to 

estimate the weights of the contributors factors of 

the resilience by pairwise comparison and expert 

judgment to be used in building the DBN model 

and its CPTs. The application of the methodology 

is demonstrated in the resilience assessment of a  

CCS system considering LOC accident as the 

disruptive events. Results can be used to improve 

the system resilience capabilities in surviving the 

failures and recovering from the consequences. 

Design modifications to improve the resilience of 

the system at the early design stage can be initiated 

by the results of this analysis and that would be 

extremely cost-effective compared to the 

operational stage. 
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