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This paper presents a novel approach for estimating the state of health (SOH) of lithium-ion batteries, which
addresses the challenge of being unable to measure the internal cell temperature during operation. The proposed
approach, termed physics-informed neural network (PINN), integrates prior physical knowledge with measurable
actual data to estimate the SOH of the batteries. To achieve this, an equivalent circuit model is established to
characterize the electrical behavior characteristics of the batteries. An electric-thermal partial differential equation is
also set to describe the batteries' heat generation mechanism and heat transfer process, and the batteries'
instantaneous temperature field is reconstructed based on the PINN model. Finally, the online estimation of the
lithium-ion batteries SOH is realized using the piecewise Arrhenius model. The simulation and experimental results
show that the proposed approach achieves an average error of 0.37% in the temperature field reconstruction of the
lithium-ion batteries and an average error of 0.15% in the online SOH estimation, even when the internal cell
temperature cannot be measured.

Keywords: Physics-informed neural network, SOH estimation, Temperature field reconstruction, Arrhenius model,
Cycle degradation.

1. Introduction severe environmental pollution problem. Lithium-
ion batteries have been widely adopted as

Clean energy instead of traditional petroleum
necessary energy storage and supply components

resources can effectively avoid the increasingly
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because of their advantages, such as high specific
energy, long cycle life, and low self-discharge
rate (Gao D et al. 2020). Therefore, accurate and
fast online estimation of the health condition of
lithium-ion batteries is a critical task.

Numerous studies have focused on
estimating the state of health (SOH) of lithium-
ion batteries, which can be divided into two main
categories: mode-driven methods and data-driven
methods. Commonly used model-driven methods
include the P2D model (Wild M et al. 2015),
electrochemical impedance model, LPM model,
Thevenin model, RC model, and PNGV model
(Gaddam RR et al. 2021). Gao R J et al. (2022)
measured the structural parameters of lithium-ion
batteries using a scanning electron microscope.
Then they proposed a health status estimate based
on the P2D model of the lithium-ion batteries cell.
Similarly, Lee et al. (2012) evaluated the SOH of
the batteries based on the batteries’ terminal
voltage, load current, and polarization impedance
electrochemical model from the perspective of
macroscopic battery parameters using the porous
electrode theory. Furthermore, some scholars
(Jaguemont J et al. 2016 and Prasad G K et al. 2013)
have used simplified electrochemical models to
estimate lithium-ion batteries' SOH and remaining
useful life (RUL).

In recent years, the application of data-
driven methods has attracted significant attention
due to the increasing maturity of machine learning
and big data technologies. Some researchers have
exploited convolutional neural networks and long
short-term memory neural networks to extract and
model the characteristics of lithium-ion batteries
charging voltage data, leading to the estimation of
battery capacity degradation (Chen Z et al. 2022).
Other researchers have used a double-layer Bi-
LSTM neural network to model NASA's public
lithium-ion batteries capacity degradation data
and evaluate the batteries' SOH and Remaining
Useful Life (RUL) (Wang Y et al. 2021).

Physics-informed Neural Network (PINN) is
a data model fusion deep learning framework for
solving supervised learning tasks, which is widely
used to solve forward and backward problems of
partial differential equations (Raissi M et al.
2019). The partial differential equations are
integrated into the training process of neural
networks as constraints, thereby improving neural
network robustness and interpretability. In this
paper, we proposed an online estimation of SOH
using the internal temperature of the batteries

during operation. It combined the heat generation
and heat transfer models with measurement data
to estimate the SOH of lithium-ion batteries, thus
reducing the need for measurement data.

2. Lithium-ion battery electric-thermal model
2.1. Equivalent circuit model

An equivalent circuit model can describe lithium-
ion  batteries'  capacitive and  resistive
characteristics under the charging and discharging
phases. The widely accepted second-order RC
equivalent circuit model (ECM) was chosen for
this study. A schematic representation of the
primary circuit structure is provided in Fig. 1.

RP Rq
ohm
C, +
-V, + | 4

Fig. 1. Lithium-ion battery second-order RC equivalent
circuit model.

The mathematical formula presented below
expresses the equivalent circuit model depicted in
Fig.1 by Kirchhoff's law:

U= Eo—Vy—=Vy = [Romn

/4 av,
I=X+c,—L
Ry dt ®
v, dv,
] =-4% -4
R, *Cagt

where E is the open circuit voltage, which is
equivalent to an ideal DC voltage source; R}, is
the internal ohmic resistance of the batteries; U is
the working voltage of the lithium-ion batteries;
R, and R, are the electrochemical polarization
resistance and the concentration difference
polarization resistance, respectively; V,, and V;, are
electrochemical ~ polarization  voltage  and
concentration difference polarization voltage
respectively; C, and C, are electrochemical
polarization  capacitance and concentration
difference polarization capacitance respectively.
To achieve parameter identification of this
equivalent circuit and obtain model parameters
that accurately reflect the batteries’ behavior, it is
necessary to transform Eq.(1) into a discrete form.
The discretization process of the polarization
voltage V, and the concentration difference
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polarization voltage V, is the same, and the

discrete state space model can be expressed as:
U= E(),k - Vp,k - Vq,k — IkRonm

__t -t
Vprs1 =€ 0PV, + kR, <1 —e RPCP> @

t t
Vorsr =€ Ra€aV, + IR, <1 —e chq)

where V., and  Vg,.,, represent the
electrochemical  polarization  voltage  and
concentration difference polarization voltage of
the lithium-ion batteries at time k+1 ,
respectively; E,, represents the open circuit
voltage of the lithium-ion batteries at time k,
which is influenced by the state of charge (SOC).
The relationship between open circuit
voltage (OCV) and SOC can be fitted using the
experimental data, expressed as follows:

E, = Z k,SOC: 3)

where n signifies the polynomlal order, where a
higher value indicates a more extraordinary
representation ability of the model; k; is the
polynomial coefficient derived through the fitting
process.

2.2. Electric-thermal coupling model

In this paper, the widely accepted Bernardi model
(Bernardi D et al. 1985) was used to calculate the
total internal heat generation during the operation.
Based on the principle of energy conservation, the
expression of the heat generation model in the
batteries is as follows:

1 aE,
a =y |U-E)+T5E] @

where Q. is the total heat output of the batteries;
Vp is the volume of the batteries cell; U is the
working voltage of the batteries; E, is the open
circuit voltage of the batteries; T is the
thermodynamic temperature, where 9E, /0T is the
temperature coefficient of the batteries voltage
with temperature.

By Fourier's law, the heat conduction
equation within the batteries in the characteristic
direction x is expressed as follows:

q=—A5= 5)

where q is the heat flux per unit area; A is the heat
transfer coefficient per unit area; T is the
temperature; x represents the direction.
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The heat transfer model of lithium-ion

batteries can be expressed by the energy
conservation equation (Li W et al. 2021):
aT
Cp at +V- ( AVT) - chll (6)

where p is the density; C, is the heat capacity at
constant pressure; T is the thermodynamic
temperature; A is the thermal conductivity.

3. SOH estimation method based on PINN

This section is dedicated to the proposed PINN-
based method for estimating the state of health
(SOH) of lithium-ion batteries online, and the
methodology is presented in Fig. 2.
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Fig. 2. The PINN-based online estimation method flow
of SOH.
3.1. Parameter Identification of Equivalent

Circuit Model Based on RLS
This study employed the recursive least squares
(RLS) method to implement the parameter
identification of the second-order RC ECM. The
corresponding calculation expression is as follows:
0(k) = 0(k = 1) + K(k)[y(k) = (k)8 (k — 1)]
P(k— DYk
UM § (o V(5
1+ yT(k)Pk — Dyp(k)
P(k) = [I - K" (k)P (k — 1)

®
where @ is the parameter identification value of the
lithium-ion batteries equivalent circuit model; K is
the algorithm gain; P is the state estimation
covariance matrix; y is the output of the lithium-
ion batteries, that is, the measured voltage; 1 is the
experimental data matrix; [ is the identity matrix.

3.2. Temperature field reconstruction based on
PINN
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In this section, we reconstructed the internal
temperature field distribution during the charging
and discharging process of the lithium-ion batteries

Fully connected neural network

PINN Network Architecture

based on PINN. The structure of the proposed
model is illustrated in Fig. 3.

oA

e e
Wl s TS

: RN ‘A‘\\\Q,!I/A i !
- O N . |
i /9""'0»’\ /‘wuo\ eemltont
QRN ERN
‘ “'is&k //é!liﬁu‘ PDE g‘
| ‘ Z S ‘ L Automatic differentiation techniques 4_2 I

input layer € R*  hidden layers € RX hidden layers & R* O\Ltput layer < B! ‘
L e e e o ,

Fig. 3. Architecture flow of the PINN model

The initial step involves using the input
parameters to construct a deep fully connected
neural network. The nonlinear functional
relationship between the input features (x,y, z, t)
and the output feature T was determined by fitting
the Artificial Neural Network (ANN). The
corresponding expression is presented below:

T = ANN(x,y,z,t;6) (8)

The output of the ANN model is
automatically differentiated, and the residual
function of PINN is defined as f(x,y,zt;6)
according to Eq.(6), and its expression is as follows:

aT
f(3,2,,6) = pCy 5= VAVT) = Qean +Q'(9)

In this study, the mean square error (MSE) is
utilized to construct the loss function of PINN
model. The expressions for these error components
are as follows:

MSEiota = aMSE,yy + BMSEp;yy  (10)
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where MSE,yy is the average error loss of the
data-driven item; MSEp;yy is the average error
loss of the physical information-driven item; « is
the weight of the error loss of the data-driven item;
B is the weight of the error loss of the physical
information-driven item; MSEp is the data-driven
item medium boundary condition average error
loss; MSE, is the initial condition average error
loss in the data-driven item; N, , Ng, and Ny
represent the boundary sampling points, initial
sampling points, and configuration training set
sampling points in turn.

3.3. Online SOH estimation based on the
Arrhenius model

In this paper, we concentrated on the capacity
fading of lithium-ion Dbatteries, and the
mathematical expression for defining the SOH of
lithium-ion batteries is presented below:

G
SOH = (1 - ﬂ) -100% (13)
nom

where C,,,, is the rated capacity of the batteries
under certain conditions, and Crqq, is the fading
capacity of the batteries.

The rate of different electrochemical
reactions occurring inside the batteries fluctuates
with temperature. The relationship between battery
capacity degradation and temperature is by
Arrhenius' law (Wang J et al. 2011) under the

3531



3532

temperature range of 288.15 K to 333.15 K. The
mathematical formula of the capacity degradation
model can be expressed as follows:

N ¢ E
Crade =z f A-exp(— 2 )-Nidt (14)
£ Jo RT(t)

where Crqq is the cumulative capacity degradation;
N is the number of charging and discharging cycles;
t is the charging and discharging cycle time; A4 is
the pre-exponential factor; E, is the activation
energy, 8.314J/(mol-K); T (t) is the temperature.

4. Verification and analysis
4.1. Lithium-ion battery performance and
degradation test experiment

In order to assess the effectiveness, accuracy, and
generalizability of the method proposed in this
study, three independent 18650 LiFePO4 power
batteries were utilized to conduct hybrid pulse
power characterization (HPPC) and battery
degradation experiments. The rated capacity and
voltage of the lithium-ion batteries were 1400mAh
and 3.2V, respectively.

To enable the dynamic evaluation of the
electrical performance of the lithium-ion batteries
during the entire life cycle of lithium-ion batteries
degradation, this study conducted HPPC
experiments during the lithium-ion batteries
degradation experiments. It collected voltage and
current data every 30s.

With the #1 battery as an example, Fig. 4
depicts the current and voltage variation of the
batteries during the HPPC. Fig. 5 and Fig. 6 show
the voltage and current variation of the batteries
during the degradation experiment, respectively.
4.2. Evaluation metrics

To evaluate the effectiveness and accuracy of the
proposed method, root mean square error (RMSE)
and mean absolute percentage error (MAPE) were
used as evaluation metrics in this study. The
calculation formulas for the above-mentioned
evaluation metrics are as follows:

RMSE =

TN 3
;Z Ge-907 (19

n
y; —yi;| 100%
MAPE:Z |u|_0 (16)
= n
where y; is the real value; ¥; is the estimated value;

n is the number of samples.
4.3. PINN temperature field model verification
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To validate the accuracy of the proposed PINN
model, the charging and discharging process
measured data and temperature distribution
simulation results of the #1 lithium-ion battery
were selected for comparison.

Using the results obtained from internal
resistance identification, the temperature field
distribution while charging the #1 battery was
simulated by implementing COMSOL 5.6 software.
A time-varying function was established to
represent the heat generation by integrating the
internal resistance identification and calculating the
heat generation model.
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Fig. 4. Lithium-ion battery HPPC experiment cycle
test curve.
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Fig. 5. Lithium-ion battery degradation test charging
cycle curve.

The training set data utilized in this study was
derived from the calculation results of the
COMSOL 5.6 simulation software. The Latin
hypercube sampling method was used to generate
200 sets of samples for the batteries boundary, with
the initial condition sampling point being 100 sets
of samples. The MSEp;yy value was calculated
from a total of 20,000 sets of global sampling
coordinate points. The hyperparameters for the
constructed PINN model are presented in Table 1.
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The temperature change curve of the #1 lithium-ion
batteries charging process was compared to the
COMSOL temperature field simulation results at
t=7000s, as shown in Fig. 7.
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Fig. 7. Comparison of PINN model and COMSOL

simulation temperature field reconstruction results

att = 7000s: (a) COMSOL simulation results; (b)
PINN model results.

The analysis of the results presented in Fig. 7
indicates that the PINN model, trained using both
measured and simulated data, exhibits a strong
ability to represent the temperature field. The
RMSE error in the entire domain is 0.17%, and the
MAPE error is 0.37%.

Table 1. Hyperparameters of PINN mode

Hyperparameters Value
Neuron structure [4, 200, 200, 200, 200, 1]
Activation function Sigmoid
Optimizer Adam
Learning rate 0.0001
Iterations 20000
Weight initialization Xavier

The temperature change values of the
cylindrical temperature side surface of the #l
battery were collected during charging to verify the
accuracy of the COMSOL simulation results and
the PINN model, and the results are shown in Fig.
8.

By analyzing the results depicted in Fig. 7
and Fig. 8, the proposed PINN model constructed
based on the simulated data shows high
performance. Compared with the COMSOL
simulation method, the PINN model maintains the
same estimation accuracy while requiring less
computational cost and can be re-trained during the
operation process based on the measured
temperature values, which results in more suitable
for online applications.
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Fig. 8. PINN Model Estimating Temperature
Results of Lithium-ion Battery Charging Process.
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Fig. 9. Lithium-ion batteries capacity degradation
trajectory curve.

As we all know, online application methods
often need to make a trade-off between accuracy
and computational cost. Simulation methods are
often used in ideal conditions without considering
data noise, while the PINN model is essentially a
data-driven method with good nonlinear expression
capabilities. It can show similar result accuracy for
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low-quality data and has
robustness.
4.4. Lithium-ion battery SOH online estimation

results

samples stronger

This section presents the experimental verification
of the proposed online SOH estimation method
using measured data of capacity degradation from
three lithium-ion batteries labeled #1, #2, and #3.
The overall capacity degradation trajectory is
presented in Fig. 9. This section analyses the
characteristics of the capacity data of lithium-ion
battery degradation experiments. It divides the
overall degradation process of lithium-ion batteries
into four stages. The Arrhenius model with
variable parameters is used to estimate the SOH for
each stage to increase the characterization ability of
the model. The multi-stage parameters and error
results of batteries #1, #2, and #3 are shown in
Table 2, and the overall SOH estimation results for
each battery are illustrated in Fig. 10 to Fig. 12.
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Fig. 10. #1 Lithium-ion battery Arrhenius model

online estimation results.
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Fig. 11. #2 Lithium-ion battery Arrhenius model
online estimation results.
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Fig. 12. #3 Lithium-ion battery Arrhenius model
online estimation results.

Table 2. The parameters identification results of the Arrhenius model and corresponding estimation errors.

Cycle range No. Ea A RMSE MAPE
The fiststage #l 12104.604 2294 021% 0.160
(s s n 10772.694 1345 0.24% 0206

# 14811.463 6.788 0.19% 0.144

The second stage #1 3959.777 0.130 0.18% 0.153
2501095 s ) 3829.609 0.123 0.19% 0.147
#3 3308410 0.100 0.20% 0.173

The third stage #1 3823.996 0139 0.09% 0.074
(10302095 1) i 4187.920 0.162 0.08% 0075
# 4553814 0.187 0.07% 0.065

#1 10121.675 1,044 0.09% 0.098

(050-EOb s ) 12702.856 2939 0.11% 0.104
# 13858465 4672 0.18% 0.189

As indicated in Table 3 through RMSE and
MAPE results, the proposed method in this study
demonstrates high accuracy and exhibits robust

online SOH estimation capabilities under specific
incomplete data conditions.
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Table 3. Online estimation error of the SOH of
lithium-ion batteries.

Batteries number RMSE (%) MAPE (%)
#1 0.14 1.113
#2 0.15 1.562
#3 0.15 1.761

5. Conclusion

This paper presents an online SOH estimation
method based on a physical information neural
network for lithium-ion batteries. The proposed
method addresses the challenging SOH estimation
problem in situations where monitoring the internal
cells of the batteries is not feasible due to
incomplete data. The effectiveness of the proposed
method is demonstrated through simulation and
experiment using three 18650-type LiFePO4 power
batteries. The simulation and experimental results
demonstrated that the proposed method has a high
accuracy rate, with an average root mean square
error (RMSE) of SOH estimation at 0.15% and an
average mean absolute percentage error (MAPE) at
1.48%.
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