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Hydroelectric Power Plant (HPP) supports European Union Electric Power System flexibility with various services
(regulation capability, fast frequency control, fast start/stop, fast generating to pumping modes transition, high
ramping rate, inertia emulation, and fault ride-through capacity, among others). New technology solutions, such
as variable speed, are being studied to provide further flexibility in the framework of the XFLEX project. However,
these additional capabilities impose new challenges on HPP’s Operations and Maintenance (O&M). This work
aims to increase the HPP’s availability under this new paradigm. Proper health indexes (HI) should reflect the
machine degradation, which is a critical component in health monitoring, fault diagnosis, and remaining useful
life prediction. We explore indicators related specifically to Hydraulic Machines, namely the mechanical efficiency
and the discharge of run-of-river Kaplan turbines, to develop a model to calculate the HPP global health index as a
measurement of the impact in the HPP condition of each selected operating point for the energy production. This
work proposes using Data Envelopment Analysis (DEA) to analyse the weights when aggregating the indicators
into a global health indicator. Analyzing the global HI improves the equipment’s performance, leading to operating
points with better power production.
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1. Introduction

Hydroelectric Power Plant (HPP) supports Euro-

pean Union Electric Power System (EPS) flexibil-

ity in regulation capability, fast frequency control,

fast start/stop, fast generating to pumping modes

transition, high ramping rate, inertia emulation,

fault ride-through capacity, etc. New technology

solutions, such as variable speed, are being stud-

ied to provide further flexibility. However, these

additional capabilities pose new challenges to the

Operations and Maintenance (O&M) of HPP.

This work aims at studying and optimising

maintenance plans to decrease the outage time and

increase the availability of the HPP under this new

paradigm.

Proper HIs should be constructed to reflect the

machine degradation, which is a critical com-

ponent in health monitoring, fault diagnosis and

remaining useful life (RUL) prediction. HIs can

be classified into three categories: mechanical

signal process-based, model-based and machine

learning-based. This work considered the model-

based HI, which consists of a database able to

represent the behaviour of the main variables de-

scribing the HPP in the different operating points,

numerical simulation results, and field tests and

in an advanced control fed by the meta models

designed to regulate the HPP units for reaching

the “optimum operation point”. By optimum op-

eration, we mean the operation of one or multiple

units that fulfill the given overall set-point while

minimising a particular objective function. There-

fore, the concept of optimum operation depends

on the definition of the cost function. The cost
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function will be defined as a weighted sum of

the degradation of the different HPP components,

following Gerini et al. (2021). The aim is to extend

the remaining lifetime by minimising this cost

function. The methodology developed will give

information on how to build the cost function and

define the weights considering the various needs

of the different HPPs.

This work focuses on exploring indicators re-

lated specifically to Hydraulic Machines, namely

the mechanical efficiency and the discharge of

run-of-river Kaplan turbines. The goal is to de-

velop new models to calculate the HPP health

index (HI) as an indicator of the impact in the

HPP condition of the selected operating points.

These models are then to be incorporated into

the advanced control optimisation algorithm. Spe-

cific KPIs evaluate the degradation process and

are included in the decision process to define

the best maintenance policy and a risk analysis.

An overall weighted health index, aggregating

those KPIs, may indicate the equipment’s con-

dition. This work proposes using Data Envelop-

ment Analysis (DEA) to analysing the weights

for the KPIs. Data Envelopment Analysis is a lin-

ear programming method introduced by Charnes

et al. (1978) for efficiency analysis. It is a non-

parametric frontier technique that does not require

a specific functional form of a production function

to measure efficiency. Instead, it evaluates the

relative efficiency of the production units under

analysis. When it comes to selecting weights, if

using a standard fixed weighting scheme, they

must be determined prior to running the model,

typically through expert input. This is frequently

criticized due to the inherent subjectivity involved

in defining them. There is also frequently a lack

of consensus among experts regarding the appro-

priate weights to be used in the aggregation func-

tions. Furthermore, these methods are incapable

of taking unit-specific characteristics into account.

As a result, the importance level assigned to each

indicator by each unit is ignored, complicating

the investigation of root causes of poor perfor-

mance. In the absence of reliable and consensual

information about the weights, the DEA model

endogenously selects the weights that maximise

the HI score for the entity under assessment. Thus,

each unit can be assessed with its weights, empha-

sising good performance indicators. It is expected

that the defined HI can diagnose and prognose

the equipment’s health index, leading to operating

points that consider the trade-off system flexibility

and power production with the system’s reliability.

2. Condition Monitoring in
Hydroelectric Power Plants

The initial investment costs of an HPP are rela-

tively high; however, HPPs have a very long lifes-

pan. Initially, operations are stable and problem-

free, and the number of faults is low. However,

due to the degradation of the system’s elements,

the number of faults increases with time. In this

context, Selak et al. (2014) presented a condition

monitoring and fault diagnostics system for hy-

dropower plants by comparing data recorded dur-

ing fault-free operation and the operational phase.

The mechanical component is one of the core

parts of the hydropower plant, stressing the im-

portance of hydro-condition monitoring. When

running in a low-efficiency district or low-head

district, some turbines cause vibrations and air

corrosion damage. Therefore, the awareness of

the turbine situation plays an important role.

Unreasonable design, manufacturing defect, or

installation defect may cause problems in the

turbine operation. Zhang and Tongji (2011) re-

designed the hardware of the hydropower sta-

tion hydraulic monitoring system Tianqiao hy-

dropower to achieve multi-channel data acquisi-

tion, multi-functional analysis, and visualisation

operations. To minimize the runner damage, the

penstock fatigue and the water losses in a pump-

turbine, Schmid et al. (2022) proposed an optimi-

sation approach to determine a start-up sequence.

Valentı́n et al. (2022) compared the hybrid mode

and the standard mode (non-hybrid) in terms of

mileage and wear and tear of the guide vanes and

runner blades servomotors. They have observed

that with a battery in parallel, the units can pro-

vide this service without regulating that much the

power since this task is done by the battery. This

hypothetically reduces the number of manoeuvres

in the regulation systems and therefore reducing
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their wear and tear.

The health index is based on expert knowl-

edge or data-driven models of specific transformer

subsystems and combines multiple information

sources and generate a consistent health state

indicator for asset management. Aizpurua et al.

(2019) considered different sources of uncertainty

in power transformers and inferred a HI value with

confidence intervals for decision-making under

uncertainty.

3. Methodology

The methodology of this paper has 2 steps. First,

we use Data Envelopment Analysis to define

weights for the HI. Next, theses weights are used

in a control model to optimise the Frequency

Containment Reserve (FCR) provision of double-

regulated turbines, typical machines deployed in

low head hydropower plants.

3.1. Data Envelopment Analysis

Data envelopment analysis (DEA) is a data-

oriented approach that allows to evaluate the per-

formance of a set of entities. It is done by esti-

mating the best practice frontier shared by pro-

duction units consuming a given amount of inputs

and transforming them into a certain amount of

outputs. The distance to such best practice frontier

is a measure of efficiency, and it reflects how much

inputs can decrease while maintaining the same

production of outputs, or by how much outputs

can be increased without the need to consume

extra resources.

Consider a set of entities J = {1, 2, . . . , n},

each consuming different amounts of m inputs to

produce s outputs.

Let I = {1, 2, . . . ,m} be the set of inputs and

R = {1, 2, . . . , s} the set of outputs. vi and ur

are the weights given, respectively, to inputs i ∈ I

and outputs r ∈ R. xij (∈ �+
0 ) are the observed

inputs i and yrj (∈ �+
0 ) are the observed outputs r

of entity j ∈ J . To evaluate the efficiency of each

entity j0, the ratio of weighted outputs to weighted

inputs of the entity under assessment j0 must be

maximised, and the similar ratios defined for all

other entities must be less than or equal to unity.

Let xi0 and yj0 be the inputs i and the outputs j of

entity 0 under assessment. The DEA ratio model

is formulated as follows:

max

∑s
r=1 uryrj0∑m
i=1 vixij0

(1)

s.t.

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1 ∀j ∈ J

ur ≥ 0 ∀r ∈ R

vi ≥ 0 ∀i ∈ I

Model (1) maximizes its efficiency for each

unit j0. The decision variables are the weights

associated with each input and output. The max-

imum achievable efficiency is 1, indicating that

the weights assigned to a DMU cannot yield an

efficiency value greater than 1 when applied to

all the DMUs (the first constraint). The weights

must be greater than or equal to 0 (second and

third constraints). The optimal weights defined

in the model aggregate multiple outputs into a

virtual output and multiple inputs into a virtual

input. The ratio of the virtual output to the vir-

tual input represents a single efficiency measure.

The optimal weights are flexible and vary for

each DMU, highlighting their best possible per-

formance. Model (1) is not linear, but it can be

easily corrected. When converting the model to

linear programming, the efficiency of entity j0
can be determined either with an input or output

orientation. The choice of orientation depends on

the characteristics of the problem under study. In

the input-oriented formulation, the efficiency is

given by the minimal factor by which all inputs of

entity j0 can be proportionally decreased without

decreasing any output level. In the output-oriented

formulation, the efficiency is given by the inverse

of the maximum factor by which all outputs of

entity j0 can be proportionally increased without

increasing any input level.

3.2. Vogelgrün Case Study

The proposed case study of this report is the

Vogelgrün run of river (RoR) hydropower plant.

Built in 1959 on the Grand Canal d’Alsace by

the Rhine river, Vogelgrün RoR features four low

head Kaplan units. It also includes two locks of
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major importance for international river naviga-

tion with more than 20000 boats yearly. The units

have long been used for flow and water level

control, whereas new needs for grid support are

emerging.

The methodology proposed follows three steps.

In the first step, we generate a database of the

relevant state variables, representing the opera-

tional parameters of the hydroelectric units (H ,

QSET , α, and β).
database variable minimum maximum

H 10 12

QSET 300 350

α 60% 100%

β 60% 100%
To have a comprehensive knowledge of the

hydropower plant operation, To have a compre-

hensive knowledge of the hydropower plant op-

eration, Vagnoni et al. (2021) developed meta-

models using Multivariate Adaptive Regression

Spline (MARS) for estimating mechanical effi-

ciency η (equation 2) and discharge Q (equation

3) depending on the recorded H , QSET , guide

vanes angle α and blades angle β. The MARS

modeling allows for evaluating the influence of

each independent variable by using only an ini-

tial exploration data set which is well suited to

validate the independent variables selected in the

study.

η = f1(H,QSET , α, β) (2)

Q = f2(H,QSET , α, β) (3)

We use the previously obtained state variables

data to fed the metamodels to provide the database

variables of mechanical efficiency and then com-

pute (HIη) and discharge (HIQ).

We also calculate the power generation P of a

hydroelectric unit is computed as in (4):

P = ρ× g ×H ×Q× η × ηe (4)

Where the density of the water ρ is considered

equal to 1000 kg/m3 and the gravitation accel-

eration 9.81 m/s2. ηe represents the efficiency

of the synchronous generator. The net head H is

measured onsite and collected in the operational

statistics, while the discharge Q and the hydraulic

machine efficiency η are estimated by the meta-

models

Next, Gerini et al. (2021) developed a control

strategy for optimal asset management of hydro-

electric units in run-of-river hydropower plants.

The control-oriented modelling methodology in-

tegrates the operational parameters of the hydro-

electric unit in an optimisation algorithm steering

the advanced control of the units.

Model (4) optimise the Frequency Containment

Reserve (FCR) provision of double-regulated tur-

bines, typical machines deployed in low head hy-

dropower plants. They define the control problem

as finding the combination of guide vanes α and

blades opening angles β that maximises the ef-

ficiency and the discharge tracking, for a given

discharge set-point QSET and external condition

nED (i.e. head H and rotational speed n).

Minα,β ωη[1− η∗(α, β, nED,s)] + (5)

ωQ[Q
SET
s − Q̄∗(α, β, nED,s)|αs−1,βs−1]2

s.t. αs−1 + ναcΔt ≤ α ≤ αs−1 + ναoΔt

βs−1 + νβcΔt ≤ β ≤ βs−1 + νβoΔt

α, β ∈ Ωα,β

where Δ = 1s, and ναo , ναc are respectively the

normalised maximum speeds in opening and clos-

ing of the servomotor acting on the guide vanes,

and νβo , νβc are the corresponding quantities

for the blades servomotor. The operation must

be within feasible positions of guide vanes and

blades, and speed of the servomotors is limited,

to avoid changes in the moving organs which

are physically impossible. Gerini et al. (2021)

did not discussed the choice of the weights ωη

and ωQ. Therefore, we focused on measuring the

impact of degradation on the power generation

through the weights analysis. In this case study,

the degradation is represented by the health in-

dexes for mechanical efficiency HIη = 1 −
η∗(α, β, nED,s) and discharge HIQ = [QSET

s −
Q̄∗(α, β, nED,s)|αs−1, βs−1]

2

In the second step, each triple (HIη , HIQ,P)

is defined as a entity, so we can run the DEA

model to obtain values for the weights ωη , ωQ.
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We consider as inputs the degradation (HIη and

HIQ) and as output the power generated (P ), as

shown in Figure 1:

�

���

���

�����

Fig. 1. Input and output configuration

To minimise the inputs levels (degradation)

with an assumption of fixed outputs levels (power

generation), we use the DEA linear programming

model with an input orientation, as formulated in

(6):

max

s∑

r=1

uryrj0 (6)

s.t.

m∑

i=1

vixij0 = 1

s∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0 ∀j ∈ J

ur ≥ 0 ∀r ∈ R

vi ≥ 0 ∀i ∈ I

It is necessary to make sure that there is not

much imbalance in the data sets, i.é., the data is

at the same or similar magnitude. They suggest

normalising the data by the mean to tackle this

problem (find the mean of the data set for each

input and output and divide each input or output

by the mean for that specific factor).

Finally, in the third step analyse the weights to

measure the trade-off between input consumption

(HIη and HIQ) and output production (P ).

For each entity j0, the efficiency score is com-

puted following Model (6) as:

eff =
uP × Pj0

vη × ηj0 + vQ ×Qj0

(7)

To measure how much degradation (in terms

of mechanical efficiency and discharge) we are

generating for each unit of power produced, we

can compute the ratios defined respectively in

equations (8) and (9):

ratioη =
vη
uP

(8)

ratioQ =
vQ
uP

(9)

We then run the control model considering the

correct proportion for the weights, in order to

improve the power generation.

4. Results

We generated 1019 combinations of α and β. We

use the metamodels to obtain η and Q and to

compute:

• mechanical efficiency: HIη = 1− η

• discharge: HIQ = (Q−QSET )2

• power: P = ρ× g ×H ×Q× η

We summarise such information in Table 1.

Table 1. Dataset generation

α β Q HIη HIQ power

mean 75.1 77.4 300.0 43.4 4242.3 22684.5
std dev 11.9 12.5 0.0 42.8 3357.6 3022.6

min 60.0 60.0 300.0 0.0 0.0 16477.5
25-perc 66.0 66.0 300.0 10.5 1459.9 20325.5
75-perc 82.0 89.0 300.0 62.8 6445.9 24736.0

max 100.0 100.0 300.0 212.7 14618.4 31211.3

Next, we mean normalised the data to make

sure the data is of similar magnitude across, as we

show in Table 2.

Table 2. HI computation

HIη HIQ power HIη HIQ power
norm norm norm

mean 43.4 4242.3 22684.5 1.0 1.0 1.0
std dev 42.8 3357.6 3022.6 1.0 0.8 0.1

min 0.0 0.0 16477.5 0.0 0.0 0.7
25-perc 10.5 1459.9 20325.5 0.2 0.3 0.9
75-perc 62.8 6445.9 24736.0 1.4 1.5 1.1

max 212.7 14618.4 31211.3 4.9 3.4 1.4
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In Table 3 we show the results obtained from

the DEA model, and compute the rations as in

equations (8) and (9).

Table 3. Weights summary

Eff w(eta) w(Q) w(power) racioeta racioQ
mean 0.0 7.9 949.8 0.0 12.7 1.1

std dev 0.1 102.6 30101.2 0.1 139.8 1.0
min 0.0 0.0 0.0 0.0 0.2 0.0

25-perc 0.0 0.1 0.2 0.0 0.6 0.3
75-perc 0.0 2.7 2.1 0.0 4.4 1.7

max 1.0 3085.2 961363.0 0.8 4142.1 4.7

We notice that in the most times, the ratio (9) is

21 times greater than the ratio (8). From that, we

suggest the weights wη = 1 and wQ = 21. That

is, the objective function in control model (4) is:

Minα,β [1− η∗(α, β, nED,s)] + (10)

21[QSET
s − Q̄∗(α, β, nED,s)|αs−1, βs−1]

2(11)

We compare the power generated wen running

for one day (01-jan-2018) with wη = wQ = 1 and

10.

For wη = wQ = 1, the total power generated

in this day was 315956693.6W; for wη = 1

and wQ = 21, the total power generated in this

day was 315956711.9W. Therefore, with the new

weights we manage to improve power generation

in 0.00001%.

Fig. 2. HIη comparison

Fig. 3. HIQ comparison

Fig. 4. Global HI comparison

The increase of frequency control actions en-

large the discrepancy between discharge set-point

usually established by day-ahead markets and real

value of the discharge. Although the improvement

in the power generation may seem small, it was

possible to promote higher stability in the dis-

charge, as we show in Figure 3. A considerable

deviate of the discharge from its expected value

because of FCR provision, could cause the alter-

ation of the river head as well. For the mechanical

efficiency (Figure 2) and the global health index

(Figure 4) it is not possible to note a significant

difference in the stability over time.
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5. Conclusion

This work proposed the use of Data Envelopment

Analysis (DEA) to analyse the weights when ag-

gregating the indicators into a global health in-

dicator. The wear and tear were included in the

health index function to consider the minimization

of the damage function in the choice of the set-

points (values for angles α and β) given by the

optimization algorithm. As a result, the opera-

tional parameters characteristics of the hydroelec-

tric unit operation can be successfully integrated

into an advanced control based and to define the

best operating set-point of the unit. Analyzing the

global HI improves the equipment’s performance,

leading to operating points with better power pro-

duction.

6. Future work

In the following steps, we intend to extend and

run the tests for data for the other months of

the year and compare them with cost functions

dependent on the amount of power generated. It

is noteworthy that the proposed methodology can

be extended to handle more than two inputs. That

means we can incorporate other HI measures, such

as damage and the number of starts and stops,

which is the case of the Frades 2 HPP in Portugal.
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