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Fatigue damage is one of the major design drivers for structural components of wind turbines. These machines are
required to operate continuously over a lifetime of more than 20 years, during which the fatigue damage progression
is influenced by control-induced loads and site-specific environmental conditions. Loads can be influenced in various
ways through the wind turbine controller, e.g., by derating the power or by operating in partial overload. Since fatigue
progresses slowly over the lifetime, each component or even failure mode has an individual fatigue budget that can
be utilized optimally. To obtain the maximum long-term benefit from each individual fatigue budget, the trade-off
between energy production and load-induced damage needs to be balanced over the complete life cycle.
For each failure mode, we can compute an optimal long-term operational planning that allows for optimal
distribution of the damage contribution over the entire or remaining lifetime. This is conducted using deterministic
assumptions about wind conditions. Now, we use uncertainties of annual wind distribution parameters as the basis
for a probabilistic assessment of the lifetime of each component. This allows for combination using a reliability
model, which yields the lifetime of the entire wind turbine system.
The impact of individual component optimizations on overall system reliability is evaluated. Results show that all
approaches yield a potential for extended lifetime, however the margin and the secondary impact differ greatly.
Simultaneously, the span of probabilistic lifetimes emphasizes that uncertainty has a significant impact on the
selection of an optimal strategy.
Our findings provide a step towards a probabilistic and reliability-based long-term operational planning for an entire
wind turbine system that is composed of multiple components.
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1. Introduction

Wind turbines are designed to operate continu-

ously over a lifetime of at least 20 years. Dur-

ing this time, they are prone to high loads under

various site-specific environmental conditions. All

large structural components like e.g., the tower

and the rotor blades are thus designed to withstand

the loads over their entire lifetime under con-

sideration of the environmental conditions. One

of the main design drivers for such components,

like the blades and the tower, is fatigue damage,

which leads to growth of cracks, and ultimately

to failure (Liao et al., 2022). Crack growth, i.e.

the progression of fatigue damage, is induced by

cyclic forces and bending moments at various lo-

cations across a turbine and is influenced not only

by the environmental conditions, but also by the

operation of a turbine. Thus, intelligent planning

and adaption of the operational strategies can be

used to influence the fatigue progression and make

best use of the available load bearing capacity.

Energy production and load-induced damage need

to be balanced over the complete life cycle to

obtain the maximum long-term benefit from each

individual turbine. To influence the loads, a wind

turbine real-time controller can implement various

methods, e.g., derating or partial overload. The

selection of the control method can be changed

by a supervisory operational management by pro-

viding setpoints to the real-time controller. This

way, the power output of a turbine can be in-

creased, at the cost of reduced lifetime, or the

lifetime can be extended at the cost of reduced

power production. Optimal operational planning
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then provides long-term operational strategies for

the selection of these control setpoints in order to

pursue individual long-term objectives.

National and international standards currently

focus on traditional deterministic or (semi-) prob-

abilistic design methods to safeguard that a tur-

bine does not break down before the desired life-

time. To make the best use of its given load budget

by operational planning, it must be estimated how

long the wind turbine will last and what its proba-

bility of survival over time is.

Since changes in operation usually affect differ-

ent structural components and their failure modes

simultaneously but differently, the desired relia-

bility and lifetime for the overall wind turbine

system is decisive. Therefore, probabilistic ap-

proaches in combination with reliability analysis

are suitable for the estimation of survival prob-

ability. Applying these methods to the design of

wind turbines has gained increasing attention, to

the point that a separate standard is currently being

developed (IEC, 2023). Sørensen and Toft (2010)

gives a general overview on probabilistic wind tur-

bine design with a special focus on structural com-

ponents and their corresponding failure modes. In

Liao et al. (2022), recent developments on fatigue

reliability of wind turbines are summarized. The

paper emphasizes the importance of this topic.

The “transformation from local components to

global system (fatigue) reliability” is explicitly

identified as a major research topic for the future.

Surrogate models are used for a probabilis-

tic evaluation of the remaining lifetime (Hübler,

2019), for reliability based design optimization

(Hu et al., 2016), as well as for the evaluation

and optimization of operating strategies (Kölle

et al., 2022). Such surrogate models are created or

trained on the basis of detailed load simulations

and their evaluation, sometimes in combination

with measured values. They are suitable for evalu-

ating the fatigue damage of structural components

of wind turbines over long periods under various

influences (Dimitrov et al., 2018). Especially in

the field of operation and control, the focus often

lies on relative comparisons of the fatigue damage

introduced to individual components using deter-

ministic methods. Do and Söffker (2021) gives an

overview of how adaptive control strategies can

be combined with prognosis of structural health.

It also mentions the challenges due to the multi-

objective nature of the problem, when control

influences loads and damages differently under

various conditions.

To be able to derive a system reliability depend-

ing on the operational strategy, we want to com-

bine probabilistic methods, which are already par-

tially used in the field of design optimization, with

surrogate models for the evaluation of controller

adaptations. To do this, we apply these methods to

a practical application example. In Requate et al.

(2022), we developed the method VIOLA, which

creates an optimal long-term operational planning

by optimally distributing the damage contribution

over the entire or remaining lifetime. The planning

makes use of the nonlinear relationship between

external conditions, load reducing control and in-

duced fatigue damage. Currently, this optimiza-

tion is based on deterministic assumptions where

an individual target damage needs to be specified

for each component. However, there are multiple

uncertainties regarding component and environ-

mental conditions. Uncertainties in strength and

conditions of an individual component cannot be

influenced or altered during operation. We will

focus on the effect of unknown environmental

conditions, because they can be measured and

compensated for by operational planning. Now,

we use uncertainties of annual wind distribution

parameters as the basis for a probabilistic assess-

ment of time to failure for each component and the

entire system.

The outline of the remaining paper is structured

as follows. In Sect. 2, we define the objectives of

the work before the methodology of the approach

is explained in Sect. 3. The utilized models and

use cases for the application example are briefly

explained in Sect. 4. The results are presented in

Sect. 5 and discussed in Sect. 6. Sect. 7 concludes

the findings.

2. Objectives

Intelligent adaptive control strategies can be used

to maximize the long-term value of wind farms.

Besides methods for maximizing performance or
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adjusting operation to the electricity price, im-

proved material utilization and lowered uncer-

tainty of time to failure are suitable goals. To

achieve this, we need to be able to compare differ-

ent operational management strategies with regard

to the reliability of the entire system. We are op-

timizing an operational strategy on a timescale of

10 minutes, to maximize the long-term value. The

strategy depends on key characteristic influences.

These can be environmental conditions such as

wind speed and wind turbulence, but also elec-

tricity price or grid specifications. If economic

evaluations are excluded for the time being, an

optimal balance between damage induced and en-

ergy generated needs to be found. For example,

additional yield can be achieved by saving lifetime

in situations with a high ratio of damage per kWh

of generated energy. However, when computing

time to failure for fatigue-driven failure modes,

commonly used deterministic methods yield a de-

terministic lifetime per failure mode. These can

only be aggregated by assuming that a system

without redundancy, such as a wind turbine struc-

ture, fails with the first component failure. A de-

terministic selection of the minimum lifetime out

of various failure modes neither allows to provide

a target reliability level (or probability of failure)

nor is it suitable for mathematical optimization.

Instead, we propose a probabilistic approach to

determine the system reliability of a wind en-

ergy system, which also is a suitable evaluation

method for finding optimal operational strategies.

By applying the methods to a practical application

example, we provide a first step towards a prob-

abilistic and reliability-based planning of wind

turbine long-term operation.

3. Methodology

The definition of a long-term operational strategy

and its optimization is taken from Requate et al.

(2022). We define a set of input conditions x̄ :=

{xj}Bx

j=1, where the dimension of xj is given by

the number of environmental input conditions. For

this work, we use wind speed v and the turbulence

intensity TI , i.e. xj = [vj , T Ij ]. Bx denotes

the total number of bins for the environmental

conditions and is defined as a fullfactorial multi-

plication of the number of bins defined for each

condition. We use 20 bins wind bins from 4.5 to

23.5 m/s and 25 TI bins from 5 to 29 %. For each

combination of input conditions, an operational

strategy, i.e., a set of setpoints of the wind turbine

controller, ū := {u(xj)}Bx

j=1 is defined. Here,

setpoints for reducing the available power of the

wind turbine (derating) δP are used: uj(xj) =

[δPj (xj)]. Given an operational strategy ū, a set of

input conditions x̄ and a frequency distribution of

these conditions over time τ , defined as hτ (x; ph),

the total fatigue damage for a failure mode fm ∈
F after time τ is given by

Dfm (τ ; ū, hτ (x; ph), zfm)

=
Bx∑
j=1

dfm (xj , uj(xj), zfm)hτ (xj ; ph) .
(1)

Here, dfm(xj , uj , zfm) is the hourly damage in-

crement described by a surrogate model. It addi-

tionally depends on the ultimate design parameter

zfm . Dfm is a function of the input time (τ ), writ-

ten in front of the semicolon, depending on fixed

parameters ū, hτ and zfm for a specific function

definition (behind the semicolon). The parameters

used for the combined frequency distribution of all

input conditions, e.g., the parameters of a Weibull-

function for the annual wind distribution, are de-

noted as ph. Assuming linearity, a total lifetime

for a failure mode

τ lifefm (ū, hΔτ (x; ph), zfm)

=
Δτ

Dfm (Δτ ; ū, hΔτ (x; ph), zfm)

(2)

can be derived from the total damage over a refer-

ence time Δτ . The total deterministic lifetime is

determined by the weakest failure mode by

τ lifedet = min{τ lifefm }fm∈F . (3)

For the probabilistic approach, uncertainties for

computing Dfm and τ lifefm can be added on differ-

ent levels. Within this work, we only consider site-

specific uncertainties in the frequency distribution

of the wind by introducing the uncertainty Xph

resulting in a distribution of the lifetime

Xτ life
fm

(ū) = τ lifefm (ū, hΔτ (x;Xph
), zfm) . (4)
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Under these assumptions, a distribution of life-

times can be created for each operational strategy,

assumption on wind conditions and ultimate de-

sign load zfm . Those can subsequently be mod-

elled by a lognormal-distribution and the corre-

sponding cdf Ffm (t; ū, Xph
) so that a reliability

function

Rfm (t; ū, Xph
) = 1− Ffm (t; ū, Xph

) (5)

for each failure mode can be obtained. Supposing

further, that each of the failure modes indepen-

dently leads to failure of the entire system, the

total reliability function is given by the product at

each point in time:

R (t; ū, Xph
) =

∏
fm

Rfm (t; ū, Xph
) (6)

The total probabilistic lifetime τ lifeprob of the wind

turbine is then given by solving

R
(
τ lifeprob ; ū, Xph

)
= Rtarget (7)

where Rtarget is the target probability of survival.

Eq.-7 is solved numerically for deriving τ lifeprob .

4. Application example

For the application example, the same generic

7.5 MW turbine model as well as the associ-

ated surrogate model for the damage increments

d(v, T I, δP ) as in Requate et al. (2022) are used.

The considered failure modes for fatigue are the

blade root bending moments in flapwise and edge-

wise direction (flapwise and edgewise bm) as well

as the combined bending moments at the tower

base (tower bm)a. The failure modes in flapwise

and edgewise direction of the blades apply to each

of the three blades. They are modelled by the same

surrogate so that the individual lifetimes are al-

ways the same. For system reliability, the product

of all three blades is considered, resulting in 7

combined failure modes (2 times 3 blades and the

tower). Those failure modes only define a small

subset of structural fatigue failure modes, but they

represent major components which are influenced

abending moments are abbreviated with bm from this point

onwards

differently by the operating strategies for different

use cases.

In each use case, we consider a reference design

lifetime of Δτ = 25 years. The ultimate design

parameter zfm is derived from a reference wind

distribution href
Δτ with parameters prefh . It is scaled

such that

R(Δτprob ; ū
nom , Xpref

h
) = Rtarget , (8)

with the nominal control strategy ūnom and the

target reliability Rtarget = 0.95. For the reference

wind distribution, we define three different use

cases. In each case, the parameters ph consist

of the parameters of the Weibull-wind distribu-

tion and the definition of a wind dependent dis-

tribution of the turbulence intensity (TI) in ac-

cordance with IEC-61400-1 (IEC, 2019). Those

result in three different ultimate design parameters

for these design-assumptions:

i) The conservative TI-design:

• Wind distribution: Weibull IEC-

class 1

• TI-distribution: IEC class B with

90% quantile at each wind condi-

tion

ii) The less conservative TI-design:

• Wind distribution: Weibull IEC-

class 1

• TI-distribution: IEC class B

Weibull distribution for each wind

condition

iii) The site-specific wind-design:

• Wind distribution: Fitted on site-

specific data

• TI-distribution: IEC class B

Weibull distribution for each wind

condition

Fig. 1 shows the site-specific wind distribution

in comparison to the IEC class 1 distribution.

The site-specific Weibull-distribution is fitted to

30 year hourly ERA5-data in the north sea. In

addition, a distribution is also fitted for each year

separately. From the annual variation, we derive a

normal distribution for the two parameters of the
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Weibull-distribution λ and k which define the un-

certainty Xph
. Fig. 2 shows the combined relative

frequency of wind and TI combinations with the

site-specific wind distribution without uncertainty.

The different operational strategies are optimized

based on the distribution shown in Fig. 2.

Three different operational strategies named

• A (edge)

• B (flap)

• C (tower)

are optimized. Each of them adapts operation such

that maximum energy is produced until the turbine

fails in one specific failure mode, i.e. in edge-

wise bm (edge), flapwise bm (flap) or tower bm

(tower):

max
ū

E (Δτ ; ū, hΔτ (x; ph)) τ
life
fm (ū, hΔτ (x; ph))

(9)

Here, energy E is calculated in the same way as

damage using Eq. 1, but replacing the damage

increment by an energy increment. The strategies

define a percentag power value δP for each com-

bination of wind speed and TI, which are shown

in Fig. 3. In the nominal strategy, the power value

is set to 100% for all conditions. This strategy

is not explicitly shown. In this case, the whole

field would be coloured in yellow. Each of the

strategies reflects the individual deterministic re-

lationship between wind speed, TI and control

inputs on the damage increments. The strategy A

favours a moderate reduction in power mainly at

lower wind speeds (cf. Fig. 3A). The other two

strategies reduce power to their maximum value

Fig. 1. Site-specific wind distribution (solid green) in
comparison to the IEC class 1 distribution (solid blue).
The dash-doted lines show the distribution fitted on year
of data each

Fig. 2. Frequency of wind and TI combinations for
site-specific wind distribution

A (Edge)

B (Flap)

C (tower)

Fig. 3. Three different operational strategies with fo-
cus on damage reduction for each failure mode sepa-
rately.

of 50% in certain regions either at combinations

of high wind speed and high TI (cf. B, Fig. 3B) or

at low wind speeds (cf. C, Fig. 3C). The change

of the operational strategies by reducing power

under some combinations always affects the dam-

age increment of all three components in different

ways. In order to assess the net benefit for the en-

tire system, we evaluate how the three optimized

operational strategies affect the deterministic and

probabilistic lifetimes compared to the nominal

strategy.
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5. Results

As a comparison, we evaluate the results of de-

terministic and probabilistic approaches for all

three design-assumption cases with each of the

four operational strategies. Fig. 4 shows the com-

bined reliability value for each of the strategies

together with the reliability values for the single

failure modes (non-solid curves). The determinis-

tic lifetime cannot be related to a reliability value.

Therefore, it is plotted as a small line around the

reliability value of 1 as a comparison. In most

cases, the total reliability value is dominated by

the edgewise bm for both the probabilistic and the

deterministic case. This is due to the properties

of the edgewise bending moment, which mainly

depends on the rotational speed of the turbine and

much less on the TI than the other two bending

moments. In the conservative TI-design (i), the

lifetimes for both failure modes, the tower bm and

the flapwise bm are already significantly higher

than the edgewise bm with the nominal operating

strategy ūnom (cf. Fig. 4i)). The failure modes of

the flapwise bm have a probabilistic and deter-

ministic lifetime of about 70 years and thus go

beyond the limit of the axis. All three optimized

strategies achieve a lifetime extension. Due to

the low variance of the reliability function and

the dominance of the edgewise failure mode, the

probabilistic lifetime is only slightly lower than

the deterministic lifetime for all three strategies A,

B and C.

In the less conservative TI-design (Fig. 4ii)), the

combined reliability values are very similar for

the nominal strategy as well as for strategies A

and C, compared to the more conservative design

(Fig. 4i)). In this case, the difference between the

reliability functions of the separate failure modes

is not as high as before, but the edgewise bm still

dominates. The combined reliability for strategy B

shows a different behaviour: For both, the deter-

ministic and the probabilistic case, the tower bm

failure mode dominates, because lifetime for both

failure modes of the blades (egde and flap) are

increased significantly by the operating strategy.

This behaviour is also reflected in the use case

with site-specific wind-design, Fig. 4iii). For strat-

i) Less conservative TI-design

ii) Less conservative TI-design

iii) Site-specific wind design

Fig. 4. Combined reliability value for each of the
three use cases and reliability functions of single fail-
ure modes. The solid dot denotes the lifetime at 0.95
reliability. The deterministic lifetime is represented by
a line around 1

egy B, the failure mode for the tower dominates.

In particular for the nominal strategy and for strat-

egy C, overall reliability is significantly lower than
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the reliability of each single failure mode. In the

deterministic case, for strategies A and C, again

the edgewise failure mode lifetime is the shortest.

For strategy B, it is the lifetime of the tower failure

mode.

Fig 5 show the total energy yield over the deter-

mined lifetime for each strategy with deterministic

evaluation and the probabilistic evaluation. Strate-

gies A and C lead to significantly increased en-

ergy production compared to the nominal strategy.

Strategy B, on the other hand, mainly reduces the

damage increments of the flapwise failure mode

and yields lower total energy production. In all

cases three cases, the other two failure modes, i.e.

either the edgewise bm or the tower bm, are still

dominant. This way, increasing the reliability of

the flapwise bm only has a low influence so that

the overall relationship between induced damage

and energy becomes worse.

In the first two cases, the relative increase (or

loss) in energy production is similar for both,

the deterministic and the probabilistic evaluation.

For the site-specific case, the increase in energy

production for strategies A and C is significantly

higher for the probabilistic case. Here, the life-

time extension compared to the nominal strat-

egy is higher, because the dominant failure mode

changes for either of the three optimized strategies

A, B and C is used,

6. Discussion

The results of the application example give an

insight how different operational strategies can

influence the deterministic and the probabilistic

lifetime of major wind turbine failure modes.

However, focus of this work was on the combi-

nation of failure modes, not on the selection of

failure modes themselves, their fatigue model and

the wind turbine reliability model. Therefore, the

results should be used as an illustration of the

different influences and the possibility of summa-

rizing failure modes. We assume, that deviations

in numeric values will be present when using

more detailed models for real-world application.

All results only consider relative differences due

to environmental conditions and operational strat-

egy. With an existing design, these environmen-

i) Less conservative TI-design

ii) Less conservative TI-design

iii) Site-specific wind design

Fig. 5. Energy production at probabilistic (prob) and
deterministic (det) lifetime for each of the three use
cases

tal and operating quantities are the most impor-

tant ones. Environmental conditions will always

differ from the original design assumptions and

the operational strategies can be adapted to those

conditions. Nevertheless, the application neglects

some major other uncertainties, e.g., from the

load-stress relationship, the surrogate modelling

or material parameters. It needs to be investigated

what influence they have on the evaluation of the

planning strategies when those are taken into ac-

count. Overall, results will become more accurate,

with more considered uncertainties and quantities.

For finding an optimal strategy, a trade-off be-

tween accuracy and computational effort must be
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found. It is also possible to use a rough estimation

of total reliability to be used for optimization and

afterwards, some selected optimized strategies can

be re-evaluated with a higher level of detail.

The results also clearly show how the design-

assumptions influence the assessment of opera-

tional strategies for the probabilistic and the de-

terministic case. In the presented example, one of

the failure modes, the edgewise bm, clearly dom-

inates. This leads to comparatively small differ-

ences between the deterministic and probabilistic

approaches. However, the effect of the operational

strategy is limited by the influence of the selected

setpoint of the real-time controller. So far, only

one degree of freedom, the percentage reduction

in power, is considered. This reduces load on each

of the failure modes to different degrees under dif-

ferent conditions, but still all of them at the same

time. With additional degrees of freedom here,

balancing the influence of all the different failure

modes with a system target reliability becomes

more important and increased the options for even

better planning.

7. Conclusion and Outlook

Within this work, we have shown that probabilis-

tic analysis can be used to determine a system

fatigue reliability of a wind turbine depending

on different operational strategies. This provides

a basis for optimizing those to meet the desired

target reliability. The example clearly shows the

different influences of design and operating strate-

gies. Based on the example, the applied method

must be extended by integrating more realistic

assumptions for additional uncertainties. This also

allows the target values for reliability to be ad-

justed accordingly so that they are consistent with

other sources and standards. Also, a calculation

of the reliability index with first-order reliabil-

ity methods (FORM) or second-order reliability

methods (SORM) can be applied to finally use

the probabilistic approaches within a mathemat-

ical optimization of the operational strategy. In

addition, an efficient evaluation of the reliability

as an objective function or constraint is necessary

to deal with a high number of optimization vari-

ables, unlike it is often the case in probabilistic

design optimization. Finally, the optimization for

long-term value of a wind energy system also

requires taking into account economic factors in

combination with the reliability value.

Acknowledgement

The research was carried out by Fraunhofer IWES
under the framework of two research projects funded
by the Bundesministerium für Bildung und Forschung
(BMBF) and the Bundesministerium für Wirtschaft und
Klimaschutz: Verbundvorhaben H2Mare VB0: Offgrid-
Wind (grant no. 03HY300E, BMBF) and Verbund-
vorhaben FlexiWind (grant no. 03EE3071A, BMWK).

References
Dimitrov, N., M. C. Kelly, A. Vignaroli, and J. Berg

(2018). From wind to loads: wind turbine site-
specific load estimation with surrogate models
trained on high-fidelity load databases. Wind Energy
Science 3(2), 767–790.
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